首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8716篇
  免费   699篇
  国内免费   679篇
  2024年   19篇
  2023年   110篇
  2022年   294篇
  2021年   492篇
  2020年   335篇
  2019年   399篇
  2018年   415篇
  2017年   281篇
  2016年   383篇
  2015年   545篇
  2014年   613篇
  2013年   634篇
  2012年   800篇
  2011年   662篇
  2010年   397篇
  2009年   376篇
  2008年   419篇
  2007年   394篇
  2006年   364篇
  2005年   283篇
  2004年   246篇
  2003年   209篇
  2002年   180篇
  2001年   143篇
  2000年   116篇
  1999年   135篇
  1998年   81篇
  1997年   90篇
  1996年   85篇
  1995年   76篇
  1994年   90篇
  1993年   63篇
  1992年   74篇
  1991年   69篇
  1990年   61篇
  1989年   33篇
  1988年   36篇
  1987年   25篇
  1986年   19篇
  1985年   23篇
  1984年   9篇
  1983年   11篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
排序方式: 共有10000条查询结果,搜索用时 734 毫秒
941.
DNA double strand break (DSB) repair by non-homologous end joining (NHEJ) is initiated by DSB detection by Ku70/80 (Ku) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) recruitment, which promotes pathway progression through poorly defined mechanisms. Here, Ku and DNA-PKcs solution structures alone and in complex with DNA, defined by x-ray scattering, reveal major structural reorganizations that choreograph NHEJ initiation. The Ku80 C-terminal region forms a flexible arm that extends from the DNA-binding core to recruit and retain DNA-PKcs at DSBs. Furthermore, Ku- and DNA-promoted assembly of a DNA-PKcs dimer facilitates trans-autophosphorylation at the DSB. The resulting site-specific autophosphorylation induces a large conformational change that opens DNA-PKcs and promotes its release from DNA ends. These results show how protein and DNA interactions initiate large Ku and DNA-PKcs rearrangements to control DNA-PK biological functions as a macromolecular machine orchestrating assembly and disassembly of the initial NHEJ complex on DNA.  相似文献   
942.
Long-distance transport in cells is driven by kinesin and dynein motors that move along microtubule tracks. These motors must be tightly regulated to ensure the spatial and temporal fidelity of their transport events. Transport motors of the kinesin-1 and kinesin-3 families are regulated by autoinhibition, but little is known about the mechanisms that regulate kinesin-2 motors. We show that the homodimeric kinesin-2 motor KIF17 is kept in an inactive state in the absence of cargo. Autoinhibition is caused by a folded conformation that enables nonmotor regions to directly contact and inhibit the enzymatic activity of the motor domain. We define two molecular mechanisms that contribute to autoinhibition of KIF17. First, the C-terminal tail interferes with microtubule binding; and second, a coiled-coil segment blocks processive motility. The latter is a new mechanism for regulation of kinesin motors. This work supports the model that autoinhibition is a general mechanism for regulation of kinesin motors involved in intracellular trafficking events.  相似文献   
943.
944.
Type I collagen, synthesized in all tissues as the heterotrimer of two α1(I) polypeptides and one α2(I) polypeptide, is the most abundant protein in the human body. Here we show that intact nonmuscle myosin filaments are required for the synthesis of heterotrimeric type I collagen. Conserved 5′ stem-loop in collagen α1(I) and α2(I) mRNAs binds the RNA-binding protein LARP6. LARP6 interacts with nonmuscle myosin through its C-terminal domain and associates collagen mRNAs with the filaments. Dissociation of nonmuscle myosin filaments results in secretion of collagen α1(I) homotrimer, diminished intracellular colocalization of collagen α1(I) and α2(I) polypeptides (required for folding of the heterotrimer), and their increased intracellular degradation. Inhibition of the motor function of myosin has similar collagen-specific effects, while disruption of actin filaments has a general effect on protein secretion. Nonmuscle myosin copurifies with polysomes, and there is a subset of polysomes involved in myosin-dependent translation of collagen mRNAs. These results indicate that association of collagen mRNAs with nonmuscle myosin filaments is necessary to coordinately synthesize collagen α1(I) and α2(I) polypeptides. We postulate that LARP6/myosin-dependent mechanism regulates the synthesis of heterotrimeric type I collagen by coordinating the translation of collagen mRNAs.  相似文献   
945.
Polydentate nitrogen heterocycle ligand 2,3-bis(2-pyridyl)pyrazine (2,3-dpp) reacted with M(NO3)x (M = Ag, x = 1; M = Cd, x = 2) to give two new complexes [Ag(2,3-dpp)(NO3)]2 (1) and [Cd(2,3-dpp)(NO3)2]n (2). Both complexes have been characterized by single-crystal X-ray diffraction, elemental analyses, IR and 1H NMR spectroscopy. Single-crystal X-ray analyses showed that complex 1 crystallized in monoclinic, space group P21/n is a dimmer containing penta-coordinated Ag+ ion. While compound 2 has 1D chain-like structure with repeat unit Cd(2,3-dpp)(NO3)2, in which the Cd(II) presents octa-coordinated N4O4 donor set with two four-membered chelating rings and two five-membered chelating rings around Cd(II) ion. Meanwhile, every neutral chain [Cd(2,3-dpp)(NO3)2]n is mutually connected by face-to-face π?π packing interactions to form a two dimensional layer. Furthermore, antibacterial activities of compound 1 and luminescent property of the compound 2 are also investigated.  相似文献   
946.
The present study was designed to test the hypothesis that a small dose of ketanserin, which enhances baroreflex activity, prevents the early lesions of atherosclerosis. In experiment 1, baroreflex sensitivity (BRS) was measured in 31 spontaneously hypertensive rats (SHRs) in a conscious state using a computerized blood pressure monitoring system. Four weeks later, the rats were administered vitamin D3 and fed a high-cholesterol diet for 8 weeks to induce atherosclerosis. Then their hearts and aortae were removed for pathological examination. A negative correlation was found between BRS and the scores of coronary (r = -0.460, P < 0.01) and aortic atherosclerosis (r = -0.448, P < 0.05) in SHR. In experiment 2, SHRs were divided into 3 groups (n = 10 in each group) and received a dose of ketanserin of 0.3, 1.0, and 3.0 mg/kg (i.g.), respectively. At the smallest dose (0.3 mg/kg), ketanserin did not lower blood pressure but enhanced BRS. In experiment 3, SHRs were administered vitamin D3, fed a high-cholesterol diet, and simultaneously treated with low-dose ketanserin. The atherosclerosis scores of the treatment group were significantly lower than those of the control group (coronary score: 0.90 ± 0.14 vs. 1.76 ± 0.27, P < 0.05; aortic scores: 1.00 ± 0.39 vs. 2.18 ± 0.41, P < 0.05). In experiment 4, male New Zealand White rabbits were fed a high-cholesterol diet and treated with low-dose ketanserin at the same time. The atherosclerosis scores of the treatment group were significantly lower than those of the control group (aortic scores: 0.26 ± 0.20 vs. 0.60 ± 0.31, P < 0.05). In conclusion, the present study demonstrated, for the first time, that low-dose ketanserin prevented the development of atherosclerosis independent of its blood pressure lowering action in SHRs and New Zealand White rabbits at least in part via enhancement of arterial baroreflex function.  相似文献   
947.
Concise synthesis of a 6-deoxy-α-l-talose tetrasaccharide, 6-deoxy-α-l-Talp-(1→3)-6-deoxy-α-l-Talp-(1→2)-6-deoxy-α-l-Talp-(1→3)-6-deoxy-α-l-Talp, the dimer of the disaccharide repeating unit of the OPS from Aggregatibacter actinomycetemcomitans serotype c, has been accomplished through suitable protecting group manipulations and stereoselective glycosylation starting from commercially available l-rhamnose. The target oligosaccharide in the form of its p-methoxyphenyl glycoside is suitable for further glycoconjugate formation via selective cleavage of this group.  相似文献   
948.
Cajanol (5-hydroxy-3-(4-hydroxy-2-methoxyphenyl)-7-methoxychroman-4-one) is an isoflavanone from Pigeonpea [Cajanus cajan (L.) Millsp.] roots. As the most effective phytoalexin in pigeonpea, the cytotoxic activity of cajanol towards cancer cells has not been report as yet. In the present study, the anticancer activity of cajanol towards MCF-7 human breast cancer cells was investigated. In order to explore the underlying mechanism of cell growth inhibition of cajanol, cell cycle distribution, DNA fragmentation assay and morphological assessment of nuclear change, ROS generation, mitochondrial membrane potential (ΔΨm) disruption, and expression of caspase-3 and caspase-9, Bax, Bcl-2, PARP and cytochrome c were measured in MCF-7 cells. Cajanol inhibited the growth of MCF-7 cells in a time and dose-dependent manner. The IC50 value was 54.05 μM after 72 h treatment, 58.32 μM after 48 h; and 83.42 μM after 24 h. Cajanol arrested the cell cycle in the G2/M phase and induced apoptosis via a ROS-mediated mitochondria-dependent pathway. Western blot analysis showed that cajanol inhibited Bcl-2 expression and induced Bax expression to desintegrate the outer mitochondrial membrane and causing cytochrome c release. Mitochondrial cytochrome c release was associated with the activation of caspase-9 and caspase-3 cascade, and active-caspase-3 was involved in PARP cleavage. All of these signal transduction pathways are involved in initiating apoptosis. To the best of our knowledge, this is the first report demonstrating the cytotoxic activity of cajanol towards cancer cells in vitro.  相似文献   
949.
Lead (Pb) is a known neurotoxicant in humans and experimental animals. Numerous studies have provided evidence that humans, especially young children, and animals chronically intoxicated with low levels of Pb show learning and memory impairments. Unfortunately, Pb-poisoning cases continue to occur in many countries. Because the current treatment options are very limited, there is a need for alternative methods to attenuate Pb toxicity. In this study, the weaning (postnatal day 21, PND21) rats were randomly divided into five groups: the control group (AIN-93G diet, de-ionized water), the lead acetate (PbAC) group (AIN-93G diet, 2 g/L PbAC in de-ionized water), the lead acetate + WR group (white rice diet, 2 g/L PbAC in de-ionized water; PbAC + WR), the lead acetate + BR group (brown rice diet, 2 g/L PbAC in de-ionized water; PbAC + BR) and the lead acetate + PR group (pre-germinated brown rice diet, 2 g/L PbAC in de-ionized water; PbAC + PR). The animals received the different diets until PND60, and then the experiments were terminated. The protective effects of pre-germinated brown rice (PR) on Pb-induced learning and memory impairment in weaning rats were assessed by the Morris water maze and one-trial-learning passive avoidance test. The anti-oxidative effects of feeding a PR diet to Pb-exposed rats were evaluated. The levels of reactive oxygen species (ROS) were determined by flow cytometry. The levels of 8-hydroxy-2-deoxyguanosine (8-OHdG), γ-aminobutyric acid (GABA) and glutamate were determined by HPLC. Our data showed that feeding a PR diet decreased the accumulation of lead and decreased Pb-induced learning and memory deficits in developing rats. The mechanisms might be related to the anti-oxidative effects and large amount of GABA in PR. Our study provides a regimen to reduce Pb-induced toxicity, especially future learning and memory deficits in the developing brain.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号