首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8274篇
  免费   657篇
  国内免费   597篇
  9528篇
  2024年   16篇
  2023年   104篇
  2022年   266篇
  2021年   434篇
  2020年   306篇
  2019年   346篇
  2018年   370篇
  2017年   252篇
  2016年   356篇
  2015年   504篇
  2014年   570篇
  2013年   600篇
  2012年   759篇
  2011年   634篇
  2010年   386篇
  2009年   370篇
  2008年   413篇
  2007年   378篇
  2006年   349篇
  2005年   276篇
  2004年   238篇
  2003年   202篇
  2002年   175篇
  2001年   142篇
  2000年   114篇
  1999年   134篇
  1998年   80篇
  1997年   89篇
  1996年   80篇
  1995年   74篇
  1994年   87篇
  1993年   61篇
  1992年   73篇
  1991年   69篇
  1990年   60篇
  1989年   33篇
  1988年   36篇
  1987年   25篇
  1986年   19篇
  1985年   23篇
  1984年   9篇
  1983年   11篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
排序方式: 共有9528条查询结果,搜索用时 0 毫秒
991.
992.
993.
Serotonin (5‐hydroxytryptamine, 5‐HT) has been implicated to play critical roles in early neural development. Recent reports have suggested that perinatal exposure to selective serotonin reuptake inhibitors (SSRIs) resulted in cortical network miswiring, abnormal social behavior, callosal myelin malformation, as well as oligodendrocyte (OL) pathology in rats. To gain further insight into the cellular and molecular mechanisms underlying SSRIs‐induced OL and myelin abnormalities, we investigated the effect of 5‐HT exposure on OL development, cell death, and myelination in cell culture models. First, we showed that 5‐HT receptor 1A and 2A subtypes were expressed in OL lineages, using immunocytochemistry, Western blot, as well as intracellular Ca2+ measurement. We then assessed the effect of serotonin exposure on the lineage development, expression of myelin proteins, cell death, and myelination, in purified OL and neuron‐OL myelination cultures. For pure OL cultures, our results showed that 5‐HT exposure led to disturbance of OL development, as indicated by aberrant process outgrowth and reduced myelin proteins expression. At higher doses, such exposure triggered a development‐dependent cell death, as immature OLs exhibited increasing susceptibility to 5‐HT treatment compared to OL progenitor cells (OPC). We showed further that 5‐HT‐induced immature OL death was mediated at least partially via 5‐HT2A receptor, since cell death could be mimicked by 5‐HT2A receptor agonist 1‐(2,5‐dimethoxy‐4‐iodophenyl)‐2‐aminopropane hydrochloride, (±)‐2,5‐dimethoxy‐4‐iodoamphetamine hydrochloride, but atten‐uated by pre‐treatment with 5‐HT2A receptor antagonist ritanserin. Utilizing a neuron‐OL myelination co‐culture model, our data showed that 5‐HT exposure significantly reduced the number of myelinated internodes. In contrast to cell injury observed in pure OL cultures, 5‐HT exposure did not lead to OL death or reduced OL density in neuron‐OL co‐cultures. However, abnormal patterns of contactin‐associated protein (Caspr) clustering were observed at the sites of Node of Ranvier, suggesting that 5‐HT exposure may affect other axon‐derived factors for myelination. In summary, this is the first study to demonstrate that manipulation of serotonin levels affects OL development and myelination, which may contribute to altered neural connectivity noted in SSRIs‐treated animals.

  相似文献   

994.
荒漠甲虫小胸鳖甲抗冻蛋白的酵母表达及应用   总被引:1,自引:0,他引:1  
昆虫抗冻蛋白(Antifreeze protein,AFP)的抗冻活性很高,可应用于生物组织和细胞的低温保存。为了在酵母中表达荒漠甲虫小胸鳖甲Microdera punctipennis抗冻蛋白Mp AFP698,并确定其在低温下的保护作用,本文通过构建真核表达载体p PIC9K-Mpafp698,转化巴斯德毕赤酵母GS115,诱导表达小胸鳖甲抗冻蛋白Mp AFP698。利用免疫印迹(Western blotting)分析Mp AFP698蛋白的特异性表达,结果显示Mpafp698基因可整合到酵母基因组中并分泌表达,且酵母自身蛋白很少分泌表达。检测抗冻蛋白的低温保护作用,结果发现,小胸鳖甲抗冻蛋白可显著改善冷冻小鼠肝脏等器官的细胞形态,降低血细胞在4℃的溶血率,提高SF9细胞冻融后的存活率。本研究表明,小胸鳖甲AFP可以在毕赤酵母中分泌表达,便于纯化,有良好的低温保护效果。  相似文献   
995.
The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. In contrast with the single SEIPIN genes in humans and yeast, there are three SEIPIN homologs in Arabidopsis thaliana, designated SEIPIN1, SEIPIN2, and SEIPIN3. Essentially nothing is known about the functions of SEIPIN homologs in plants. Here, a yeast (Saccharomyces cerevisiae) SEIPIN deletion mutant strain and a plant (Nicotiana benthamiana) transient expression system were used to test the ability of Arabidopsis SEIPINs to influence LD morphology. In both species, expression of SEIPIN1 promoted accumulation of large-sized lipid droplets, while expression of SEIPIN2 and especially SEIPIN3 promoted small LDs. Arabidopsis SEIPINs increased triacylglycerol levels and altered composition. In tobacco, endoplasmic reticulum (ER)-localized SEIPINs reorganized the normal, reticulated ER structure into discrete ER domains that colocalized with LDs. N-terminal deletions and swapping experiments of SEIPIN1 and 3 revealed that this region of SEIPIN determines LD size. Ectopic overexpression of SEIPIN1 in Arabidopsis resulted in increased numbers of large LDs in leaves, as well as in seeds, and increased seed oil content by up to 10% over wild-type seeds. By contrast, RNAi suppression of SEIPIN1 resulted in smaller seeds and, as a consequence, a reduction in the amount of oil per seed compared with the wild type. Overall, our results indicate that Arabidopsis SEIPINs are part of a conserved LD biogenesis machinery in eukaryotes and that in plants these proteins may have evolved specialized roles in the storage of neutral lipids by differentially modulating the number and sizes of lipid droplets.  相似文献   
996.
Enterocytozoon bieneusi, the most frequently diagnosed microsporidian species in humans, is also identified in a wide range of animals. To date, few data are available on E. bieneusi in yaks (Bos grunniens). In this study, we examined the occurrence and genotype identity of E. bieneusi in yaks in four counties in Qinghai Province of China. Of 327 fecal specimens examined by nested PCR analysis of the ribosomal internal transcribed spacer, 23 (7.0%) were E. bieneusi‐positive. DNA sequence analysis of the PCR products revealed the presence of five distinct genotypes: three Group 2 genotypes previously reported in cattle as well as humans (BEB4, I and J) and two novel genotypes (CHN11 and CHN12) belonging to the large zoonotic group (Group 1). Data of the study suggest that these animals could be potential reservoirs for human E. bieneusi infection.  相似文献   
997.
Cardiovascular diseases (CVDs) are still a major cause of people deaths worldwide, and mesenchymal stem cells (MSCs) transplantation holds great promise due to its capacity to differentiate into cardiovascular cells and secrete protective cytokines, which presents an important mechanism of MSCs therapy for CVDs. Although the capability of MSCs to differentiate into cardiomyocytes (CMCs), endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) has been well recognized in massive previous experiments both in vitro and in vivo, low survival rate of transplanted MSCs in recipient hearts suggests that therapeutic effects of MSCs transplantation might be also correlated with other underlying mechanisms. Notably, recent studies uncovered that MSCs were able to secret cholesterol-rich, phospholipid exosomes which were enriched with microRNAs (miRNAs). The released exosomes from MSCs acted on hearts and vessels, and then exerted anti-apoptosis, cardiac regeneration, anti-cardiac remodeling, anti-inflammatory effects, neovascularization and anti-vascular remodeling, which are considered as novel molecular mechanisms of therapeutic potential of MSCs transplantation. Here we summarized recent advances about the role of exosomes in MSCs therapy for CVDs, and discussed exosomes as a novel approach in the treatment of CVDs in the future.  相似文献   
998.
Giving access to sequence and annotation data for genome assemblies is important because, while facilitating research, it places both assembly and annotation quality under scrutiny, resulting in improvements to both. Therefore we announce Avianbase, a resource for bird genomics, which provides access to data released by the Avian Phylogenomics Consortium.Access to complete genome sequences provides the first step towards the understanding of the biology of organisms. It is the template that underpins the phenotypic characteristics of individuals and ultimately separates species due to the accumulation and fixation of mutations over evolutionary timescales. In terms of the available genomic datasets for species, birds, as our more distant relatives, have been historically underrepresented. The high cost of sequencing and annotation in the past led to a bias towards accumulating data for species that are either established model organisms or economically significant (that is, chicken, turkey and duck, representing two sister orders within the Galloanseriformes clade from the large and diverse phylogeny of birds). The recent release of genome assemblies and initial predictions of protein-coding genes [1-4] for 44 bird species, including representatives from all major branches of the bird phylogeny, is, therefore, highly significant.One of the major challenges with the release of this number of newly sequenced genomes and the many more to come [5] is how to make these available to the various research communities in a way that supports basic research. Providing access to the sequences and initial annotations in the format of text files will limit the potential usage of the data as they require significant resources, including bioinformatics personnel and computer infrastructure in place to access and mine - for example, searching for genes belonging to certain protein families or searching for orthologous genes. These overheads pose a serious bottleneck that can hinder research and requires concerted action by the relevant research communities.Once genomes are submitted to public databases, genome-wide annotations are frequently generated and released either via the Ensembl project [6] or by the National Center for Biotechnology Information [7] and sequence and annotation are then made visually available online in integrated views via the Ensembl or the University of California Santa Cruz (UCSC) genome browsers [8]. These systems provide search facilities, sequence alignment tools like BLAT/BLAST and various analysis tools to facilitate subsetting and computational retrieval of the data, including UCSC’s Table Browser or Ensembl’s Perl and REST APIs and BioMart system.While these systems have become almost indispensable for research, not all sequenced genomes are annotated and displayed in genome browsers. Full genome annotation remains time consuming and resource intensive: a full evidence-based Ensembl genebuild takes approximately 4 months. Thus, the list of species represented is currently limited and depends on various factors, including the completeness of the assembled genome sequence and the overall demand in the scientific community for the resources, including whether the species is a model organism (for example, human or mouse), economically important (for example, farmed animals) or of specific phylogenetic interest. Many of the recently sequenced bird genomes do not obviously fall within these categories.  相似文献   
999.
Fusarium head blight (FHB) in wheat and other small grain cereals is a globally devastating disease caused by toxigenic Fusarium pathogens. Controlling FHB is a challenge because germplasm that is naturally resistant against these pathogens is inadequate. Current control measures rely on fungicides. Here, an antibody fusion comprised of the Fusarium spp.‐specific recombinant antibody gene CWP2 derived from chicken, and the endochitinase gene Ech42 from the biocontrol fungus Trichoderma atroviride was introduced into the elite wheat cultivar Zhengmai9023 by particle bombardment. Expression of this fusion gene was regulated by the lemma/palea‐specific promoter Lem2 derived from barley; its expression was confirmed as lemma/palea‐specific in transgenic wheat. Single‐floret inoculation of independent transgenic wheat lines of the T3 to T6 generations revealed significant resistance (type II) to fungal spreading, and natural infection assays in the field showed significant resistance (type I) to initial infection. Gas chromatography–mass spectrometry analysis revealed marked reduction of mycotoxins in the grains of the transgenic wheat lines. Progenies of crosses between the transgenic lines and the FHB‐susceptible cultivar Huamai13 also showed significantly enhanced FHB resistance. Quantitative real‐time PCR analysis revealed that the tissue‐specific expression of the antibody fusion was induced by salicylic acid drenching and induced to a greater extent by F. graminearum infection. Histochemical analysis showed substantial restriction of mycelial growth in the lemma tissues of the transgenic plants. Thus, the combined tissue‐specific and pathogen‐inducible expression of this Fusarium‐specific antibody fusion can effectively protect wheat against Fusarium pathogens and reduce mycotoxin content in grain.  相似文献   
1000.
Fusarium head blight (FHB) and Fusarium seedling blight (FSB) of wheat, caused by Fusarium pathogens, are devastating diseases worldwide. We report the expression of RNA interference (RNAi) sequences derived from an essential Fusarium graminearum (Fg) virulence gene, chitin synthase (Chs) 3b, as a method to enhance resistance of wheat plants to fungal pathogens. Deletion of Chs3b was lethal to Fg; disruption of the other Chs gene family members generated knockout mutants with diverse impacts on Fg. Comparative expression analyses revealed that among the Chs gene family members, Chs3b had the highest expression levels during Fg colonization of wheat. Three hairpin RNAi constructs corresponding to the different regions of Chs3b were found to silence Chs3b in transgenic Fg strains. Co‐expression of these three RNAi constructs in two independent elite wheat cultivar transgenic lines conferred high levels of stable, consistent resistance (combined type I and II resistance) to both FHB and FSB throughout the T3 to T5 generations. Confocal microscopy revealed profoundly restricted mycelia in Fg‐infected transgenic wheat plants. Presence of the three specific short interfering RNAs in transgenic wheat plants was confirmed by Northern blotting, and these RNAs efficiently down‐regulated Chs3b in the colonizing Fusarium pathogens on wheat seedlings and spikes. Our results demonstrate that host‐induced gene silencing of an essential fungal chitin synthase gene is an effective strategy for enhancing resistance in crop plants under field test conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号