全文获取类型
收费全文 | 8286篇 |
免费 | 658篇 |
国内免费 | 598篇 |
专业分类
9542篇 |
出版年
2024年 | 16篇 |
2023年 | 104篇 |
2022年 | 266篇 |
2021年 | 434篇 |
2020年 | 306篇 |
2019年 | 346篇 |
2018年 | 371篇 |
2017年 | 251篇 |
2016年 | 357篇 |
2015年 | 505篇 |
2014年 | 571篇 |
2013年 | 599篇 |
2012年 | 763篇 |
2011年 | 633篇 |
2010年 | 386篇 |
2009年 | 369篇 |
2008年 | 409篇 |
2007年 | 379篇 |
2006年 | 347篇 |
2005年 | 277篇 |
2004年 | 239篇 |
2003年 | 204篇 |
2002年 | 175篇 |
2001年 | 142篇 |
2000年 | 114篇 |
1999年 | 134篇 |
1998年 | 80篇 |
1997年 | 92篇 |
1996年 | 83篇 |
1995年 | 75篇 |
1994年 | 86篇 |
1993年 | 60篇 |
1992年 | 73篇 |
1991年 | 69篇 |
1990年 | 60篇 |
1989年 | 33篇 |
1988年 | 37篇 |
1987年 | 25篇 |
1986年 | 19篇 |
1985年 | 23篇 |
1984年 | 9篇 |
1983年 | 11篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1972年 | 1篇 |
1971年 | 1篇 |
排序方式: 共有9542条查询结果,搜索用时 0 毫秒
61.
62.
63.
Majumder A Cai L Ejby M Schmidt BG Lahtinen SJ Jacobsen S Svensson B 《Proteomics》2012,12(7):1006-1014
Lactobacillus acidophilus NCFM (NCFM) is a well-documented probiotic bacterium isolated from human gut. Detailed 2D gel-based NCFM proteomics addressed the so-called alkaline range, i.e., pH 6-11. Proteins were identified in 150 of the 202 spots picked from the Coomassie Brilliant Blue stained 2D gel using MALDI-TOF-MS. The 102 unique gene products among the 150 protein identifications were assigned to different functional categories, and evaluated by considering a calculated distribution of abundance as well as grand average of hydrophobicity values. None of the very few available lactic acid bacteria proteome reference maps included the range of pI >7.0. The present report of such data on the proteome of NCFM fundamentally complements current knowledge on protein profiles limited to the acid and neutral pH range. 相似文献
64.
Analysis of transcriptional and epigenetic changes in hybrid vigor of allopolyploid Brassica napus uncovers key roles for small RNAs 下载免费PDF全文
65.
The yeast protein Pan1p plays a key role in actin-driven endocytosis. The molecular architecture enables the protein to perform multivalent tasks. First, Pan1p acts as a central scaffold for assembly of coat complex at the endocytic sites through its binding to multiple endocytic proteins. Secondly, Pan1p is also required for normal actin cytoskeleton organization and dynamics at the cell cortex. It is capable of F-actin binding and promoting the Arp2/3-mediated actin nucleation via its WH2 and acid domains. Pan1p, therefore, is responsible for the mechanism of coupling the vesicle coat to actin network in the early steps of internalization. The function of Pan1p is under a negative regulation by the kinase Prk1p. Phosphorylation of Pan1p by Prk1p results in disassembly of the coat complex and dissociation of the vesicle from actin meshwork after internalization. The phosphorylation of Pan1p is possibly reversed by the type 1 phosphatase Glc7p, which will allow Pan1p to be reused for coat assembly in the next round of endocytosis. 相似文献
66.
Persaud SJ Muller D Belin VD Papadimitriou A Huang GC Amiel SA Jones PM 《Archives of physiology and biochemistry》2007,113(3):104-109
Arachidonic acid (AA) is generated in pancreatic beta-cells through the activation of Ca2+-dependent cytosolic phospholipase A2 (cPLA2) and the consequent hydrolysis of membrane phospholipids in the sn-2 position of the glycerophospholipid backbone. AA acts as a second messenger in beta-cells to elevate cytosolic Ca2+ levels and stimulate insulin secretion, but it is not clear whether these are direct effects of AA or are dependent on its metabolism by cyclooxygenase (COX) and/or lipoxygenase (LOX) enzymes. In addition, much of the published data in this area have been generated using insulin-secreting cell lines or rodent islets, with very little information on AA generation and metabolism in human islets of Langerhans. This short review examines cPLA2, COX and LOX expression and function in insulin- secreting cell lines and rodent and human islets. 相似文献
67.
Yan G Zhang G Fang X Zhang Y Li C Ling F Cooper DN Li Q Li Y van Gool AJ Du H Chen J Chen R Zhang P Huang Z Thompson JR Meng Y Bai Y Wang J Zhuo M Wang T Huang Y Wei L Li J Wang Z Hu H Yang P Le L Stenson PD Li B Liu X Ball EV An N Huang Q Zhang Y Fan W Zhang X Li Y Wang W Katze MG Su B Nielsen R Yang H Wang J Wang X Wang J 《Nature biotechnology》2011,29(11):1019-1023
The nonhuman primates most commonly used in medical research are from the genus Macaca. To better understand the genetic differences between these animal models, we present high-quality draft genome sequences from two macaque species, the cynomolgus/crab-eating macaque and the Chinese rhesus macaque. Comparison with the previously sequenced Indian rhesus macaque reveals that all three macaques maintain abundant genetic heterogeneity, including millions of single-nucleotide substitutions and many insertions, deletions and gross chromosomal rearrangements. By assessing genetic regions with reduced variability, we identify genes in each macaque species that may have experienced positive selection. Genetic divergence patterns suggest that the cynomolgus macaque genome has been shaped by introgression after hybridization with the Chinese rhesus macaque. Macaque genes display a high degree of sequence similarity with human disease gene orthologs and drug targets. However, we identify several putatively dysfunctional genetic differences between the three macaque species, which may explain functional differences between them previously observed in clinical studies. 相似文献
68.
Chen J Chen Y Zhu W Han Y Han B Xu R Deng L Cai Y Cong X Yang Y Hu S Chen X 《Journal of cellular biochemistry》2008,103(6):1718-1731
Lysophosphatidic acid (LPA) is a bioactive phospholipid with diverse functions mediated via G-protein-coupled receptors (GPCRs). In view of the elevated levels of LPA in acute myocardial infarction (MI) patients we have conducted studies aimed at identifying specific LPA receptor subtypes and signaling events that may mediate its actions in hypertrophic remodeling. Experiments were carried out in cultured neonatal rat cardiomyocytes (NRCMs) exposed to LPA and in a rat MI model. In NRCMs, LPA-induced hypertrophic growth was completely abrogated by DGPP, an LPA1/LPA3 antagonist. The LPA3 agonist OMPT, but not the LPA2 agonist dodecylphosphate, promoted hypertrophy as examined by 3[H]-Leucine incorporation, ANF-luciferase expression and cell area. In in vivo experiments, LPA1, LPA2 and LPA3 mRNA levels as well as LPA1 and LPA3 protein levels increased together with left ventricular remodeling (LVRM) after MI. In addition, LPA stimulated the phosphorylation of Akt and p65 protein and activated NF-kappaB-luciferase expression. Inhibitors of PI3K (wortmannin), mTOR (rapamycin), and NF-kappaB (PDTC or SN50) effectively prevented LPA-induced 3[H]-Leucine incorporation and ANF-luciferase expression. Furthermore, ERK inhibitors (U0126 and PD98059) suppressed LPA-stimulated activation of NF-kappaB and p65 phosphorylation whereas wortmannin showed no effect on NF-kappaB activation. Our findings indicate that LPA3 and/or LPA1 mediate LPA-induced hypertrophy of NRCMs and that LPA1 and LPA3 may be involved in LVRM of MI rats. Moreover, Akt and NF-kappaB signaling pathways independently implicate in LPA-stimulated myocardial hypertrophic growth. 相似文献
69.
Chuanbin Yang Cui-Zan Cai Ju-Xian Song Jie-Qiong Tan Siva Sundara Kumar Durairajan Ashok Iyaswamy 《Autophagy》2017,13(12):2028-2040
Alzheimer disease (AD) is the most common neurodegenerative disease characterized by the deposition of amyloid plaque in the brain. The autophagy-associated PIK3C3-containing phosphatidylinositol 3-kinase (PtdIns3K) complex has been shown to interfere with APP metabolism and amyloid beta peptide (Aβ) homeostasis via poorly understood mechanisms. Here we report that NRBF2 (nuclear receptor binding factor 2), a key component and regulator of the PtdIns3K, is involved in APP-CTFs homeostasis in AD cell models. We found that NRBF2 interacts with APP in vivo and its expression levels are reduced in hippocampus of 5XFAD AD mice; we further demonstrated that NRBF2 overexpression promotes degradation of APP C-terminal fragments (APP-CTFs), and reduces Aβ1–40 and Aβ1-42 levels in human mutant APP-overexpressing cells. Conversely, APP-CTFs, Aβ1–40 and Aβ1-42 levels were increased in Nrbf2 knockdown or nrbf2 knockout cells. Furthermore, NRBF2 positively regulates autophagy in neuronal cells and NRBF2-mediated reduction of APP-CTFs levels is autophagy dependent. Importantly, nrbf2 knockout attenuates the recruitment of APP and APP-CTFs into phagophores and the sorting of APP and APP-CTFs into endosomal intralumenal vesicles, which is accompanied by the accumulation of the APP and APP-CTFs into RAB5-positive early endosomes. Collectively, our results reveal the potential connection between NRBF2 and the AD-associated protein APP by showing that NRBF2 plays an important role in regulating degradation of APP-CTFs through modulating autophagy. 相似文献
70.
Yiqing Chen Zhidong Fan Lixia Ma Juan Yin Man Luo Wangfeng Cai 《Saudi Journal of Biological Sciences》2014,21(5):450-456
Hydrogen sulfide (H2S) is a major malodorous compound emitted from wastewater treatment plants. In this study, the performance of three pilot-scale immobilized-cell biotrickling filters (BTFs) spacked with combinations of bamboo charcoal and ceramsite in different ratios was investigated in terms of H2S removal. Extensive tests were performed to determine the removal characteristics, pressure drops, metabolic products, and removal kinetics of the BTFs. The BTFs were operated in continuous mode at low loading rates varying from 0.59 to 5.00 g H2S m−3 h−1 with an empty bed retention time (EBRT) of 25 s. The removal efficiency (RE) for each BTF was >99% in the steady-state period, and high standards were met for the exhaust gas. It was found that a multilayer BTF had a slight advantage over a perfectly mixed BTF for the removal of H2S. Furthermore, an impressive amount >97% of the H2S was eliminated by 10% of packing materials near the inlet of the BTF. The modified Michaelis–Menten equation was adopted to describe the characteristics of the BTF, and Ks and Vm values for the BTF with pure bamboo charcoal packing material were 3.68 ppmv and 4.26 g H2S m−3 h−1, respectively. Both bamboo charcoal and ceramsite demonstrated good performance as packing materials in BTFs for the removal of H2S, and the results of this study could serve as a guide for further design and operation of industrial-scale systems. 相似文献