首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   22篇
  2024年   1篇
  2021年   3篇
  2019年   6篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   9篇
  2014年   4篇
  2013年   8篇
  2012年   5篇
  2011年   11篇
  2010年   5篇
  2009年   7篇
  2008年   7篇
  2007年   8篇
  2006年   12篇
  2005年   7篇
  2004年   4篇
  2003年   6篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1978年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有147条查询结果,搜索用时 15 毫秒
91.
92.
Realistic stirring is an important concern when using benthic chambers to measure processes at the sediment-water column interface. A simple whirling cup rotor device that is driven by external flow and stirs benthic chambers effectively is described here. Flow tank studies and field studies demonstrated that this device homogenizes benthic chambers rapidly and responds quickly and linearly to external flow conditions. The device is simple to build and use and avoids many of the disadvantages of conventional stirring motors and pumps.  相似文献   
93.
94.
The contribution of plasma membrane proteins to the virulence of plant pathogenic fungi is poorly understood. Accordingly, the objective of this study was to characterize the acyl-CoA dependent ceramide synthase Bar1 (previously implicated in plasma membrane organization) in the wheat pathogen Fusarium graminearum. The role of Bar1 in mediating cell membrane organization was confirmed as ΔBAR1 mutants failed to display a distinct sterol-rich domain at the hyphal tip. The ΔBAR1 mutants were non-pathogenic when inoculated onto wheat heads, and their in vitro growth also was severely perturbed. ΔBAR1 mutants were incapable of producing perithecia (sexual fruiting structures) and only produced macroconidia (asexual spores) in the presence of NaCl. Sphingolipid analyses indicated that Bar1 is specifically necessary for the production of glucosylceramides in both F. graminearum and Aspergillus nidulans. Interestingly, glucosylceramides appear to mediate sensitivity to heat stable antifungal factor (HSAF), as, in addition to ΔBAR1 mutants, a glucosylceramide synthase deficient mutant of Yarrowia lipolytica is also resistant to HSAF.  相似文献   
95.
Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production.  相似文献   
96.
Arranged in a spatial-temporal gradient for germ cell development, the adult germline of Caenorhabditis elegans is an excellent system for understanding the generation, differentiation, function, and maintenance of germ cells. Imaging whole C. elegans germlines along the distal-proximal axis enables powerful cytological analyses of germ cell nuclei as they progress from the pre-meiotic tip through all the stages of meiotic prophase I. To enable high-content image analysis of whole C. elegans gonads, we developed a custom algorithm and pipelines to function with image processing software that enables: (1) quantification of cytological features at single nucleus resolution from immunofluorescence images; and (2) assessment of these individual nuclei based on their position within the germline. We show the capability of our quantitative image analysis approach by analyzing multiple cytological features of meiotic nuclei in whole C. elegans germlines. First, we quantify double-strand DNA breaks (DSBs) per nucleus by analyzing DNA-associated foci of the recombinase RAD-51 at single-nucleus resolution in the context of whole germline progression. Second, we quantify the DSBs that are licensed for crossover repair by analyzing foci of MSH-5 and COSA-1 when they associate with the synaptonemal complex during meiotic prophase progression. Finally, we quantify P-granule composition across the whole germline by analyzing the colocalization of PGL-1 and ZNFX-1 foci. Our image analysis pipeline is an adaptable and useful method for researchers spanning multiple fields using the C. elegans germline as a model system.  相似文献   
97.
98.
Sphingolipids are major components of the plasma membrane, tonoplast, and other endomembranes of plant cells. Previous compositional analyses have focused only on individual sphingolipid classes because of the widely differing polarities of plant sphingolipids. Consequently, the total content of sphingolipid classes in plants has yet to be quantified. In addition, the major polar sphingolipid class in the model plant Arabidopsis thaliana has not been previously determined. In this report, we describe the separation and quantification of sphingolipid classes from A. thaliana leaves using hydrolysis of sphingolipids and high performance liquid chromatography (HPLC) analysis of o-phthaldialdehyde derivatives of the released long-chain bases to monitor the separation steps. An extraction solvent that contained substantial proportions of water was used to solubilized >95% of the sphingolipids from leaves. Neutral and charged sphingolipids were then partitioned by anion exchange solid phase extraction. HPLC analysis of the charged lipid fraction from A. thaliana revealed only one major anionic sphingolipid class, which was identified by mass spectrometry as hexose-hexuronic-inositolphosphoceramide. The neutral sphingolipids were predominantly composed of monohexosylceramide with lesser amounts of ceramides. Extraction and separation of sphingolipids from soybean and tomato showed that, like A. thaliana, the neutral sphingolipids consisted of ceramide and monohexosylceramides; however, the major polar sphingolipid was found to be N-acetyl-hexosamine-hexuronic-inositolphosphoceramide. In extracts from A. thaliana leaves, hexosehexuronic-inositolphosphoceramides, monohexosylceramides, and ceramides accounted for approximately 64, 34, and 2% of the total sphingolipids, respectively, suggesting an important role for the anionic sphingolipids in plant membranes.  相似文献   
99.
100.
Phytochelatin (PC) synthases are gamma-glutamylcysteine (gamma-Glu-Cys) dipeptidyl transpeptidases that catalyze the synthesis of heavy metal-binding PCs, (gamma-Glu-Cys)nGly polymers, from glutathione (GSH) and/or shorter chain PCs. Here it is shown through investigations of the enzyme from Arabidopsis (Arabidopsis thaliana; AtPCS1) that, although the N-terminal half of the protein, alone, is sufficient for core catalysis through the formation of a single-site enzyme acyl intermediate, it is not sufficient for acylation at a second site and augmentative stimulation by free Cd2+. A purified N-terminally hexahistidinyl-tagged AtPCS1 truncate containing only the first 221 N-terminal amino acid residues of the enzyme (HIS-AtPCS1_221tr) is competent in the synthesis of PCs from GSH in media containing Cd2+ or the synthesis of S-methyl-PCs from S-methylglutathione in media devoid of heavy metal ions. However, whereas its full-length hexahistidinyl-tagged equivalent, HIS-AtPCS1, undergoes gamma-Glu-Cys acylation at two sites during the Cd2+-dependent synthesis of PCs from GSH and is stimulated by free Cd2+ when synthesizing S-methyl-PCs from S-methylglutathione, HIS-AtPCS1_221tr undergoes gamma-Glu-Cys acylation at only one site when GSH is the substrate and is not directly stimulated, but instead inhibited, by free Cd2+ when S-methylglutathione is the substrate. Through the application of sequence search algorithms capable of detecting distant homologies, work we reported briefly before but not in its entirety, it has been determined that the N-terminal half of AtPCS1 and its equivalents from other sources have the hallmarks of a papain-like, Clan CA Cys protease. Whereas the fold assignment deduced from these analyses, which substantiates and is substantiated by the recent determination of the crystal structure of a distant prokaryotic PC synthase homolog from the cyanobacterium Nostoc, is capable of explaining the strict requirement for a conserved Cys residue, Cys-56 in the case of AtPCS1, for formation of the biosynthetically competent gamma-Glu-Cys enzyme acyl intermediate, the primary data from experiments directed at determining whether the other two residues, His-162 and Asp-180 of the putative papain-like catalytic triad of AtPCS1, are essential for catalysis have yet to be presented. This shortfall in our basic understanding of AtPCS1 is addressed here by the results of systematic site-directed mutagenesis studies that demonstrate that not only Cys-56 but also His-162 and Asp-180 are indeed required for net PC synthesis. It is therefore established experimentally that AtPCS1 and, by implication, other eukaryotic PC synthases are papain Cys protease superfamily members but ones, unlike their prokaryotic counterparts, which, in addition to having a papain-like N-terminal catalytic domain that undergoes primary gamma-Glu-Cys acylation, contain an auxiliary metal-sensing C-terminal domain that undergoes secondary gamma-Glu-Cys acylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号