首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   22篇
  2024年   1篇
  2021年   3篇
  2019年   6篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   9篇
  2014年   4篇
  2013年   8篇
  2012年   5篇
  2011年   11篇
  2010年   5篇
  2009年   7篇
  2008年   7篇
  2007年   8篇
  2006年   12篇
  2005年   7篇
  2004年   4篇
  2003年   6篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1978年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有147条查询结果,搜索用时 15 毫秒
81.
The sphingoid long chain bases (LCBs) and their phosphorylated derivatives (LCB-Ps) are important signaling molecules in eukaryotic organisms. The cellular levels of LCB-Ps are tightly controlled by the coordinated action of the LCB kinase activity responsible for their synthesis and the LCB-P phosphatase and lyase activities responsible for their catabolism. Although recent studies have implicated LCB-Ps as regulatory molecules in plants, in comparison with yeast and mammals, much less is known about their metabolism and function in plants. To investigate the functions of LCB-Ps in plants, we have undertaken the identification and characterization of Arabidopsis genes that encode the enzymes of LCB-P metabolism. In this study the Arabidopsis At1g27980 gene was shown to encode the only detectable LCB-P lyase activity in Arabidopsis. The LCB-P lyase activity was characterized, and mutant plant lines lacking the lyase were generated and analyzed. Whereas in other organisms loss of LCB-P lyase activity is associated with accumulation of high levels of LCB/LCB-Ps and developmental abnormalities, the sphingolipid profiles of the mutant plants were remarkably similar to those of wild-type plants, and no developmental abnormalities were observed. Thus, these studies indicate that the lyase plays a minor role in maintenance of sphingolipid metabolism during normal plant development and growth. However, a clear role for the lyase was revealed upon perturbation of sphingolipid synthesis by treatment with the inhibitor of ceramide synthase, fumonisin B(1).  相似文献   
82.
Seed oils enriched in omega‐7 monounsaturated fatty acids, including palmitoleic acid (16:1?9) and cis‐vaccenic acid (18:1?11), have nutraceutical and industrial value for polyethylene production and biofuels. Existing oilseed crops accumulate only small amounts (<2%) of these novel fatty acids in their seed oils. We demonstrate a strategy for enhanced production of omega‐7 monounsaturated fatty acids in camelina (Camelina sativa) and soybean (Glycine max) that is dependent on redirection of metabolic flux from the typical ?9 desaturation of stearoyl (18:0)‐acyl carrier protein (ACP) to ?9 desaturation of palmitoyl (16:0)‐acyl carrier protein (ACP) and coenzyme A (CoA). This was achieved by seed‐specific co‐expression of a mutant ?9‐acyl‐ACP and an acyl‐CoA desaturase with high specificity for 16:0‐ACP and CoA substrates, respectively. This strategy was most effective in camelina where seed oils with ~17% omega‐7 monounsaturated fatty acids were obtained. Further increases in omega‐7 fatty acid accumulation to 60–65% of the total fatty acids in camelina seeds were achieved by inclusion of seed‐specific suppression of 3‐keto‐acyl‐ACP synthase II and the FatB 16:0‐ACP thioesterase genes to increase substrate pool sizes of 16:0‐ACP for the ?9‐acyl‐ACP desaturase and by blocking C18 fatty acid elongation. Seeds from these lines also had total saturated fatty acids reduced to ~5% of the seed oil versus ~12% in seeds of nontransformed plants. Consistent with accumulation of triacylglycerol species with shorter fatty acid chain lengths and increased monounsaturation, seed oils from engineered lines had marked shifts in thermotropic properties that may be of value for biofuel applications.  相似文献   
83.
Ceramide synthases catalyze an N-acyltransferase reaction using fatty acyl-coenzyme A (CoA) and long-chain base (LCB) substrates to form the sphingolipid ceramide backbone and are targets for inhibition by the mycotoxin fumonisin B1 (FB1). Arabidopsis (Arabidopsis thaliana) contains three genes encoding ceramide synthases with distinct substrate specificities: LONGEVITY ASSURANCE GENE ONE HOMOLOG1 (LOH1; At3g25540)- and LOH3 (At1g19260)-encoded ceramide synthases use very-long-chain fatty acyl-CoA and trihydroxy LCB substrates, and LOH2 (At3g19260)-encoded ceramide synthase uses palmitoyl-CoA and dihydroxy LCB substrates. In this study, complementary DNAs for each gene were overexpressed to determine the role of individual isoforms in physiology and sphingolipid metabolism. Differences were observed in growth resulting from LOH1 and LOH3 overexpression compared with LOH2 overexpression. LOH1- and LOH3-overexpressing plants had enhanced biomass relative to wild-type plants, due in part to increased cell division, suggesting that enhanced synthesis of very-long-chain fatty acid/trihydroxy LCB ceramides promotes cell division and growth. Conversely, LOH2 overexpression resulted in dwarfing. LOH2 overexpression also resulted in the accumulation of sphingolipids with C16 fatty acid/dihydroxy LCB ceramides, constitutive induction of programmed cell death, and accumulation of salicylic acid, closely mimicking phenotypes observed previously in LCB C-4 hydroxylase mutants defective in trihydroxy LCB synthesis. In addition, LOH2- and LOH3-overexpressing plants acquired increased resistance to FB1, whereas LOH1-overexpressing plants showed no increase in FB1 resistance, compared with wild-type plants, indicating that LOH1 ceramide synthase is most strongly inhibited by FB1. Overall, the findings described here demonstrate that overexpression of Arabidopsis ceramide synthases results in strongly divergent physiological and metabolic phenotypes, some of which have significance for improved plant performance.Ceramides are central intermediates in sphingolipid biosynthesis and mediators of programmed cell death (PCD) in plants (Dunn et al., 2004; Saucedo-García et al., 2011; Ternes et al., 2011a). Ceramides are synthesized by ceramide synthase (or sphingosine N-acyltransferase; EC 2.3.1.24), which catalyzes the formation of an amide linkage between a sphingoid long-chain base (LCB) and a fatty acid using LCB and fatty acyl-CoA substrates (Mullen et al., 2012). The LCB substrate can have two or three hydroxyl groups that are referred to as dihydroxy or trihydroxy LCBs, respectively (Chen et al., 2010). The fatty acyl-CoA substrates typically have chain lengths of C16 or C22 to C26 (Dunn et al., 2004). The latter are referred to as very-long-chain fatty acids (VLCFAs). The ceramide product of ceramide synthase is used primarily as a substrate for the synthesis of either of the two major glycosphingolipids found in plants: glucosylceramide (GlcCer) and glycosyl inositolphosphoceramide (GIPC; Chen et al., 2010). These glycosphingolipids are major structural components of the plasma membrane and other endomembranes of plant cells (Verhoek et al., 1983; Sperling et al., 2005). In this role, they contribute to membrane physical properties that are important for the ability of plant cells to adjust to environmental extremes and to Golgi-mediated protein trafficking of proteins, including cell wall metabolic enzymes and auxin transporters that underlie plant growth (Borner et al., 2005; Markham et al., 2011; Mortimer et al., 2013; Yang et al., 2013). Alternatively, ceramides can be converted to ceramide-1-phosphates by ceramide kinase activity (Liang et al., 2003). The interchange of ceramides between their free and phosphorylated forms has been linked to the regulation of PCD and PCD-associated resistance to pathogens via the hypersensitive response (HR; Liang et al., 2003; Bi et al., 2014; Simanshu et al., 2014).The Arabidopsis (Arabidopsis thaliana) genome contains three ceramide synthase genes denoted LONGEVITY ASSURANCE GENE ONE HOMOLOG1 (LOH1; At3g25540), LOH2 (At3g19260), and LOH3 (At1g13580; Markham et al., 2011; Ternes et al., 2011a). These studies suggest that LOH1 and LOH3 polypeptides are structurally related and catalyze primarily the amidation reaction of trihydroxy LCBs and CoA esters of VLCFAs. The LOH2 polypeptide is more distantly related to LOH1 and LOH3 and catalyzes primarily the condensation of dihydroxy LCBs and C16 fatty acyl-CoAs (Chen et al., 2008; Markham et al., 2011; Ternes et al., 2011a). The ceramide products of LOH1 and LOH3 are most prevalent in GIPC, whereas the ceramide products of LOH2 are more enriched in GlcCer (Markham and Jaworski, 2007; Chen et al., 2008; Ternes et al., 2011b). Similar to plants, the six ceramide synthase isoforms found in humans and mice have distinct specificities for their LCB and acyl-CoA substrates, and these specificities contribute to the formation of complex sphingolipids with differing structures and functions (Venkataraman et al., 2002; Riebeling et al., 2003; Mizutani et al., 2005, 2006; Laviad et al., 2008).In Arabidopsis, LOH1 and LOH3 are partially redundant, but the combined activities of the corresponding polypeptides are essential for plant cell viability, as null double mutants of these genes are lethal (Markham et al., 2011). In contrast, mutants of LOH2 are viable and display no apparent growth phenotype, which brings into question the role of LOH2 ceramide synthase in plant performance (Markham et al., 2011; Ternes et al., 2011a). Overall, these observations indicate that sphingolipids with LOH1-/LOH3-derived trihydroxy LCBs and VLCFA ceramides are essential, but LOH2-derived dihydroxy LCBs and C16 fatty acid ceramides are not required by plant cells. Related to this, LCB C-4 hydroxylase mutants that are deficient in trihydroxy LCBs accumulate elevated amounts of sphingolipids with dihydroxy LCB- and C16 fatty acid-containing ceramides via LOH2 activity (Chen et al., 2008). These mutants are severely impaired in growth and do not transition from vegetative to reproductive growth (Chen et al., 2008).Ceramide synthases are known targets for competitive inhibition by sphingosine analog mycotoxins, including fumonisin B1 (FB1) and AAL toxin, produced by pathogenic fungi such as various Fusarium spp. and Alternaria alternata f. sp. lycopersici (Abbas et al., 1994). Inhibition of ceramide synthase results in the accumulation of LCBs that are believed to trigger PCD and result in cytotoxicity (Abbas et al., 1994). In studies of LOH mutants, treatment of Arabidopsis seedlings with FB1 resulted in not only increases in LCBs but also increases in C16 fatty acid-containing sphingolipids and decreases in VLCFA-containing sphingolipids (Markham et al., 2011; Ternes et al., 2011a). The interpretation of this observation was that FB1 preferentially inhibits LOH1 and LOH3 ceramide synthases but inhibits LOH2 ceramide synthase to a lesser extent (Markham et al., 2011; Ternes et al., 2011a).Given the findings from Arabidopsis mutants that LOH1 and LOH3 ceramide synthases have distinct substrate specificities and sensitivity to FB1 relative to LOH2, we hypothesized that the overexpression of each of these ceramide synthases would lead to the production of different sphingolipid compositions as well as different growth phenotypes. This report details experiments designed to test this hypothesis. Among the results presented is a large divergence in the effects of the overexpression of LOH1 and LOH3 versus LOH2 on the growth of Arabidopsis. LOH2 overexpression was also shown to result in sphingolipid compositional, growth, and physiological phenotypes that closely mimic those observed previously in LCB C-4 hydroxylase mutants (Chen et al., 2008).  相似文献   
84.
85.
Oilseeds provide a unique platform for the production of high-value fatty acids that can replace non-sustainable petroleum and oceanic sources of specialty chemicals and aquaculture feed. However, recent efforts to engineer the seeds of crop and model plant species to produce new types of fatty acids, including hydroxy and conjugated fatty acids for industrial uses and long-chain omega-3 polyunsaturated fatty acids for farmed fish feed, have met with only modest success. The collective results from these studies point to metabolic 'bottlenecks' in the engineered plant seeds that substantially limit the efficient or selective flux of unusual fatty acids between different substrate pools and ultimately into storage triacylglycerol. Evidence is emerging that diacylglycerol acyltransferase 2, which catalyzes the final step in triacylglycerol assembly, is an important contributor to the synthesis of unusual fatty acid-containing oils, and is likely to be a key target for future oilseed metabolic engineering efforts.  相似文献   
86.
A limestone outcrop along the north shore of Lake Waccamaw, North Carolina, is found to contain ca. 0.1 % phosphate by weight. Weathering processes have probably driven steady inputs of phosphate from this source throughout the lake's history, accounting for its near eutrophic state. The sediments of Lake Waccamaw are enriched with phosphate, particularly in the littoral zone near the outcrop. Chemical and biological processes apparently remove phosphate from solution rapidly, making detection of a soluble phosphate signal near the outcrop difficult. Management of nutrient inputs and water quality in Lake Waccamaw requires consideration of the effects of this in-lake source of phosphate. Other sources of phosphate, particularly in the lake's drainage basin, may be less important than previously thought.  相似文献   
87.
Understanding the genetic basis of complex traits is a fundamental goal of evolutionary genetics. Yet, the genetics controlling complex traits in many important species such as hemp (Cannabis sativa) remain poorly investigated. Because hemp’s change in legal status with the 2014 and 2018 U.S. Federal Farm Bills, interest in the genetics controlling its numerous agriculturally important traits has steadily increased. To better understand the genetics of agriculturally important traits in hemp, we developed an F2 population by crossing two phenotypically distinct hemp cultivars (Carmagnola and USO31). Using whole-genome sequencing, we mapped quantitative trait loci (QTL) associated with variation in numerous agronomic and biochemical traits. A total of 69 loci associated with agronomic (34) and biochemical (35) trait variation were identified. We found that most QTL co-localized, suggesting that the phenotypic distinctions between Carmagnola and USO31 are largely controlled by a small number of loci. We identified TINY and olivetol synthase as candidate genes underlying co-localized QTL clusters for agronomic and biochemical traits, respectively. We functionally validated the olivetol synthase candidate by expressing the alleles in yeast. Gas chromatography-mass spectrometry assays of extracts from these yeast colonies suggest that the USO31 olivetol synthase is functionally less active and potentially explains why USO31 produces lower cannabinoids compared to Carmagnola. Overall, our results help modernize the genomic understanding of complex traits in hemp.  相似文献   
88.
Confluent monolayers of the human hepatoblastoma-derived cell line, Hep G2, were incubated in serum-free medium. Conditioned medium was ultracentrifugally separated into d less than 1.063 g/ml and d 1.063-1.20 g/ml fractions since very little VLDL was observed. The d less than 1.063 g/ml fraction was examined by electron microscopy; it contained particles of 24.5 +/- 2.3 nm diameter, similar in size to plasma LDL; a similar size was demonstrated by nondenaturing gradient gel electrophoresis. These particles possessed apoB-100 only. The d less than 1.063 g/ml fraction had a lipid composition unlike that of plasma LDL; unesterified cholesterol was elevated, there was relatively little cholesteryl ester, and triglyceride was the major core lipid. The d 1.063-1.20 g/ml fraction was heterogeneous in size and morphology. Electron microscopy revealed discoidal particles (14.9 +/- 3.2 nm long axis and 4.5 +/- 0.2 nm short axis) as well as small spherical ones (7.6 +/- 1.4 nm diameter). Nondenaturing gradient gel electrophoresis consistently showed the presence of peaks at 13.4 11.9, 9.7, and 7.4 nm. The latter peak was conspicuous and probably corresponded to the small spherical structures seen by electron microscopy. Unlike plasma HDL, Hep G2 d 1.063-1.20 g/ml lipoproteins contained little or no stainable material in the (HDL3a)gge region by gradient gel electrophoresis. Hep G2 d 1.063-1.20 g/ml lipoproteins differed significantly in composition from their plasma counterparts; unesterified cholesterol and phospholipid were elevated and the mole ratio of unesterified cholesterol to phospholipid was 0.8. Cholesteryl ester content was extremely low. ApoA-I was the major apolipoprotein, while apoE was the next most abundant protein; small quantities of apoA-II and apoCs were also present. Immunoblot analysis of the d 1.063-1.20 g/ml fraction after gradient gel electrophoresis showed that apoE was localized in the larger pore region of the gel (apparent diameter greater than 12.2 nm); the apoA-I distribution in this fraction was very broad (7.1-12.2 nm), and included a distinct band at 7.4 nm. Immunoblotting after gradient gel electrophoresis of concentrated medium revealed that a significant fraction of apoA-I in the uncentrifuged medium was in a lipid-poor or lipid-free form. This cell line may be a useful model for investigating the metabolism of newly formed HDL.  相似文献   
89.
BackgroundThe excess incidence of thyroid cancer in Ukraine and Belarus observed a few years after the Chernobyl accident is considered to be largely the result of 131I released from the reactor. Although the Belarus thyroid cancer prevalence data has been previously analyzed, no account was taken of dose measurement error.MethodsWe examined dose-response patterns in a thyroid screening prevalence cohort of 11,732 persons aged under 18 at the time of the accident, diagnosed during 1996–2004, who had direct thyroid 131I activity measurement, and were resident in the most radio-actively contaminated regions of Belarus. Three methods of dose-error correction (regression calibration, Monte Carlo maximum likelihood, Bayesian Markov Chain Monte Carlo) were applied.ResultsThere was a statistically significant (p<0.001) increasing dose-response for prevalent thyroid cancer, irrespective of regression-adjustment method used. Without adjustment for dose errors the excess odds ratio was 1.51 Gy (95% CI 0.53, 3.86), which was reduced by 13% when regression-calibration adjustment was used, 1.31 Gy (95% CI 0.47, 3.31). A Monte Carlo maximum likelihood method yielded an excess odds ratio of 1.48 Gy (95% CI 0.53, 3.87), about 2% lower than the unadjusted analysis. The Bayesian method yielded a maximum posterior excess odds ratio of 1.16 Gy (95% BCI 0.20, 4.32), 23% lower than the unadjusted analysis. There were borderline significant (p = 0.053–0.078) indications of downward curvature in the dose response, depending on the adjustment methods used. There were also borderline significant (p = 0.102) modifying effects of gender on the radiation dose trend, but no significant modifying effects of age at time of accident, or age at screening as modifiers of dose response (p>0.2).ConclusionsIn summary, the relatively small contribution of unshared classical dose error in the current study results in comparatively modest effects on the regression parameters.  相似文献   
90.
Mangroves on Pacific high islands offer a number of important ecosystem services to both natural ecological communities and human societies. High islands are subjected to constant erosion over geologic time, which establishes an important source of terrigeneous sediment for nearby marine communities. Many of these sediments are deposited in mangrove forests and offer mangroves a potentially important means for adjusting surface elevation with rising sea level. In this study, we investigated sedimentation and elevation dynamics of mangrove forests in three hydrogeomorphic settings on the islands of Kosrae and Pohnpei, Federated States of Micronesia (FSM). Surface accretion rates ranged from 2.9 to 20.8 mm y?1, and are high for naturally occurring mangroves. Although mangrove forests in Micronesian high islands appear to have a strong capacity to offset elevation losses by way of sedimentation, elevation change over 6½ years ranged from ?3.2 to 4.1 mm y?1, depending on the location. Mangrove surface elevation change also varied by hydrogeomorphic setting and river, and suggested differential, and not uniformly bleak, susceptibilities among Pacific high island mangroves to sea-level rise. Fringe, riverine, and interior settings registered elevation changes of ?1.30, 0.46, and 1.56 mm y?1, respectively, with the greatest elevation deficit (?3.2 mm y?1) from a fringe zone on Pohnpei and the highest rate of elevation gain (4.1 mm y?1) from an interior zone on Kosrae. Relative to sea-level rise estimates for FSM (0.8–1.8 mm y?1) and assuming a consistent linear trend in these estimates, soil elevations in mangroves on Kosrae and Pohnpei are experiencing between an annual deficit of 4.95 mm and an annual surplus of 3.28 mm. Although natural disturbances are important in mediating elevation gain in some situations, constant allochthonous sediment deposition probably matters most on these Pacific high islands, and is especially helpful in certain hydrogeomorphic zones. Fringe mangrove forests are most susceptible to sea-level rise, such that protection of these outer zones from anthropogenic disturbances (for example, harvesting) may slow the rate at which these zones convert to open water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号