首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   22篇
  2024年   1篇
  2021年   3篇
  2019年   6篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   9篇
  2014年   4篇
  2013年   8篇
  2012年   5篇
  2011年   11篇
  2010年   5篇
  2009年   7篇
  2008年   7篇
  2007年   8篇
  2006年   12篇
  2005年   7篇
  2004年   4篇
  2003年   6篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1978年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有147条查询结果,搜索用时 62 毫秒
121.
In this paper, we describe the complete chloroplast genome of Lolium arundinaceum. This sequence is the culmination of a long-term project completed by >400 undergraduates who took general genetics at Middle Tennessee State University from 2004-2007. It was undertaken in an attempt to introduce these students to an open-ended experiential/exploratory lesson to produce and analyze novel data. The data they produced should provide the necessary information for both phylogenetic comparisons and plastome engineering of tall fescue. The fescue plastome (GenBank FJ466687) is 136048 bp with a typical quadripartite structure and a gene order similar to other grasses; 56% of the plastome is coding region comprised of 75 protein-coding genes, 29 tRNAs, four rRNAs, and one hypothetical coding region (ycf). Comparisons of Poaceae plastomes reveal size differences between the PACC (subfamilies Panicoideae, Arundinoideae, Centothecoideae, and Chloridoideae) and BOP (subfamilies Bambusoideae, Oryzoideae, and Pooideae) clades. Alignment analysis suggests that several potentially conserved large deletions in previously identified intergenic length polymorphic regions are responsible for the majority of the size discrepancy. Phylogenetic analysis using whole plastome data suggests that fescue closely aligns with Lolium perenne. Some unique features as well as phylogenetic branch length calculations, however, suggest that a number of changes have occurred since these species diverged.  相似文献   
122.
Two relatively rare fatty acids, γ-linolenic acid (GLA) and stearidonic acid (STA), have attracted much interest due to their nutraceutical and pharmaceutical potential. STA, in particular, has been considered a valuable alternative source for omega-3 fatty acids due to its enhanced conversion efficiency in animals to eicosapentaenoic acid when compared with the more widely consumed omega-3 fatty acid, α-linolenic acid (ALA), present in most vegetable oils. Exploiting the wealth of information currently available on in planta oil biosynthesis and coupling this information with the tool of genetic engineering it is now feasible to deliberately perturb fatty acid pools to generate unique oils in commodity crops. In an attempt to maximize the STA content of soybean oil, a borage Δ6 desaturase and an Arabidopsis Δ15 desaturase were pyramided by either sexual crossing of transgenic events, re-transformation of a Δ6 desaturase event with the Δ15 desaturase or co-transformation of both desaturases. Expression of both desaturases in this study was under the control of the seed-specific soybean β-conglycinin promoter. Soybean events that carried only the Δ15 desaturase possessed a significant elevation of ALA content, while events with both desaturases displayed a relative STA abundance greater than 29%, creating a soybean with omega-3 fatty acids representing over 60% of the fatty acid profile. Analyses of the membrane lipids in a subset of the transgenic events suggest that soybean seeds compensate for enhanced production of polyunsaturated fatty acids by increasing the relative content of palmitic acid in phosphatidylcholine and other phospholipids.  相似文献   
123.
The prevalence of ten antibiotic resistance genes (ARGs) was evaluated in a total of 616 Escherichia coli isolates from swine manure, swine lagoon effluent, and from soils that received lagoon effluent on a commercial swine farm site in Sampson County, North Carolina (USA). Isolates with ARGs coding for streptomycin/spectinomycin (aadA/strA and strB), tetracycline (tetA and tetB), and sulfonamide (sul1) occurred most frequently (60.6–91.3%). The occurrence of E. coli isolates that carried aadA, tetA, tetB, and tetC genes was significantly more frequent in soil samples (34.097.2%) than in isolates from lagoon samples (20.9–90.6%). Furthermore, the frequency of isolates that contain genes coding for aadA and tetB was significantly greater in soil samples (82.6–97.2%) when compared to swine manure (16.8–86.1%). Isolates from the lagoon that carried tetA, tetC, and sul3 genes were significantly more prevalent during spring (63.3–96.7%) than during winter (13.1–67.8%). The prevalence of isolates from the lagoon that possessed the strA, strB, and sul1 resistance genes was significantly more frequent during the summer (90.0–100%) than during spring (66.6–80.0%). The data suggest that conditions in the lagoon, soil, and manure may have an impact on the occurrence of E. coli isolates with specific ARGs. Seasonal variables seem to impact the recovery isolates with ARGs; however, ARG distribution may be associated with mobile genetic elements or a reflection of the initial numbers of resistant isolates shed by the animals.  相似文献   
124.
The biosynthesis of the tocotrienol and tocopherol forms of vitamin E is initiated by prenylation of homogentisate. Geranylgeranyl diphosphate (GGDP) is the prenyl donor for tocotrienol synthesis, whereas phytyl diphosphate (PDP) is the prenyl donor for tocopherol synthesis. We have previously shown that tocotrienol synthesis is initiated in monocot seeds by homogentisate geranylgeranyl transferase (HGGT). This enzyme is related to homogentisate phytyltransferase (HPT), which catalyzes the prenylation step in tocopherol synthesis. Here we show that monocot HGGT is localized in the plastid and expressed primarily in seed endosperm. Despite the close structural relationship of monocot HGGT and HPT, these enzymes were found to have distinct substrate specificities. Barley (Hordeum vulgare cv. Morex) HGGT expressed in insect cells was six times more active with GGDP than with PDP, whereas the Arabidopsis HPT was nine times more active with PDP than with GGDP. However, only small differences were detected in the apparent Km values of barley HGGT for GGDP and PDP. Consistent with its in vitro substrate properties, barley HGGT generated a mixture of tocotrienols and tocopherols when expressed in the vitamin E-null vte2-1 mutant lacking a functional HPT. Relative levels of tocotrienols and tocopherols produced in vte2-1 differed between organs and growth stages, reflective of the composition of plastidic pools of GGDP and PDP. In addition, HGGT was able to functionally substitute for HPT to rescue vte2-1-associated phenotypes, including reduced seed viability and increased fatty acid oxidation of seed lipids. Overall, we show that monocot HGGT is biochemically distinct from HPT, but can replace HPT in important vitamin E-related physiological processes.  相似文献   
125.
126.
Sphingolipid synthesis is initiated by condensation of Ser with palmitoyl-CoA producing 3-ketodihydrosphinganine (3-KDS), which is reduced by a 3-KDS reductase to dihydrosphinganine. Ser palmitoyltransferase is essential for plant viability. Arabidopsis thaliana contains two genes (At3g06060/TSC10A and At5g19200/TSC10B) encoding proteins with significant similarity to the yeast 3-KDS reductase, Tsc10p. Heterologous expression in yeast of either Arabidopsis gene restored 3-KDS reductase activity to the yeast tsc10Δ mutant, confirming both as bona fide 3-KDS reductase genes. Consistent with sphingolipids having essential functions in plants, double mutant progeny lacking both genes were not recovered from crosses of single tsc10A and tsc10B mutants. Although the 3-KDS reductase genes are functionally redundant and ubiquitously expressed in Arabidopsis, 3-KDS reductase activity was reduced to 10% of wild-type levels in the loss-of-function tsc10a mutant, leading to an altered sphingolipid profile. This perturbation of sphingolipid biosynthesis in the Arabidopsis tsc10a mutant leads an altered leaf ionome, including increases in Na, K, and Rb and decreases in Mg, Ca, Fe, and Mo. Reciprocal grafting revealed that these changes in the leaf ionome are driven by the root and are associated with increases in root suberin and alterations in Fe homeostasis.  相似文献   
127.
Suspension feeding by bivalves has been hypothesized to control phytoplankton biomass in shallow aquatic ecosystems. Lake Waccamaw, North Carolina, USA is a shallow lake with a diverse bivalve assemblage and low to moderate phytoplankton biomass levels. Filtration and ingestion rates of two relatively abundant species in the lake, the endemic unionid, Elliptio waccamawensis, and an introduced species, Corbicula fluminea, were measured in experiments using natural phytoplankton for durations of 1 to 6 days. Measured filtration and ingestion rates averaged 1.78 and 1.121 ind.–1 d–1, much too low to control phytoplankton at the observed phytoplankton biomass levels and growth rates. Measured ingestion rates averaged 4.80 and 1.50 µg chlorophyll a ind.–1 d–1, too low to support individuals of either species. The abundance of benthic microalgae in Lake Waccamaw reaches 200 mg chlorophyll a m–2 in the littoral zone and averages almost an order of magnitude higher than depth-integrated phytoplankton chlorophyll a. Total microalgal biomass in the lake is therefore not controlled by suspension feeding by bivalves.  相似文献   
128.
129.
130.
Soil from a roadside ditch at Lake Waccamaw, North Carolina, was tested for cyst-forming free-living amoebae, and water from the same ditch was tested for fecal coliform bacteria. Soil samples incubated at room temperature (21-23° C) yielded Acanthamoeba polyphaga, Amoeba sp., Hyperamaeba sp., Mayorella penardi. Naegleria gruberi, Naegleria minor , and unidentified ciliates, testaceans and slime molds. Incubation at 37-39° C yielded Acanthamoeba jacobsi, Platyamoeba schaefferi , and a new amoeba to be described herein. Fecal contamination of the ditch was confirmed by a direct membrane filtration technique that yielded a mean of 1,410 + 134 bacteria/ ml. The new amoeba is assigned to the class Heterolobosea Page & Blanton, 1985 on the basis of promitotic nuclear division, and a flagellated stage with a cytostome as seen in the genus Tetramitus. Amoebae studied in hanging drop preparations were flattened and irregular as described for the genus Stachyamoeba in the family Gruberellidae but changed to a lobose cylindrical form as described for species of Vahlkampfia in the family Vahlkampfiidae. A new genus and species, Learamoeba waccamawensis , is proposed for the amoeba described herein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号