首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   22篇
  2024年   1篇
  2021年   3篇
  2019年   6篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   9篇
  2014年   4篇
  2013年   8篇
  2012年   5篇
  2011年   11篇
  2010年   5篇
  2009年   7篇
  2008年   7篇
  2007年   8篇
  2006年   12篇
  2005年   7篇
  2004年   4篇
  2003年   6篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1978年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有147条查询结果,搜索用时 15 毫秒
101.
Plants contain a large diversity of sphingolipid structures, arising in part from C4 hydroxylation and Δ4 and Δ8 desaturation of the component long-chain bases (LCBs). Typically, 85-90% of sphingolipid LCBs in Arabidopsis leaves contain a cis or transΔ8 double bond produced by sphingoid LCB Δ8 desaturase (SLD). To understand the metabolic and physiological significance of Δ8 unsaturation, studies were performed using mutants of the Arabidopsis SLD genes AtSLD1 and AtSLD2. Our studies revealed that both genes are constitutively expressed, the corresponding polypeptides are ER-localized, and expression of these genes in Saccharomyces cerevisiae yields mixtures of cis/transΔ8 desaturation products, predominantly as trans isomers. Consistent in part with the higher expression of AtSLD1 in Arabidopsis plants, AtSLD1 T-DNA mutants showed large reductions in Δ8 unsaturated LCBs in all organs examined, whereas AtSLD2 mutants showed little change in LCB unsaturation. Double mutants of AtSLD1 and AtSLD2 showed no detectable LCB Δ8 unsaturation. Comprehensive analysis of sphingolipids in rosettes of these mutants revealed a 50% reduction in glucosylceramide levels and a corresponding increase in glycosylinositolphosphoceramides that were restored by complementation with a wild-type copy of AtSLD1. Double sld1 sld2 mutants lacked apparent growth phenotypes under optimal conditions, but displayed altered responses to certain stresses, including prolonged exposure to low temperatures. These results are consistent with a role for LCB Δ8 unsaturation in selective channeling of ceramides for the synthesis of complex sphingolipids and the physiological performance of Arabidopsis.  相似文献   
102.
Tocotrienols are the primary form of vitamin E in seeds of most monocot plants, including cereals such as rice and wheat. As potent antioxidants, tocotrienols contribute to the nutritive value of cereal grains in human and livestock diets. cDNAs encoding homogentisic acid geranylgeranyl transferase (HGGT), which catalyzes the committed step of tocotrienol biosynthesis, were isolated from barley, wheat and rice seeds. Transgenic expression of the barley HGGT in Arabidopsis thaliana leaves resulted in accumulation of tocotrienols, which were absent from leaves of nontransformed plants, and a 10- to 15-fold increase in total vitamin E antioxidants (tocotrienols plus tocopherols). Overexpression of the barley HGGT in corn seeds resulted in an increase in tocotrienol and tocopherol content of as much as six-fold. These results provide insight into the genetic basis for tocotrienol biosynthesis in plants and demonstrate the ability to enhance the antioxidant content of crops by introduction of an enzyme that redirects metabolic flux.  相似文献   
103.
104.
The human liver cell line HepG2 was investigated for its synthesis and secretion of lecithin-cholesterol acyltransferase. The cells were grown to confluency in Eagle's minimal essential medium plus 10% fetal bovine serum. At the onset of the study, fetal bovine serum was removed and cells were grown in minimal essential medium only. At 6, 12, 24, and 48 h the cells were harvested, and the culture medium collected at each time point was assayed for lecithin-cholesterol acyltransferase mass and activity, cholesterol esterification rate, and apolipoprotein A-I mass. The rate of the enzyme secretion measured by both mass and activity was linear over 24 h of culture. The enzyme mass by radioimmunoassay was 1.7, 4.1, 7.9 and 13.7 ng/ml culture medium (or 8.3, 19.9, 38.5 and 66.7 ng/mg cell protein), respectively, and enzyme activity using an exogenous source of phosphatidylcholine/cholesterol liposomes containing apolipoprotein A-I as substrate was 85, 170, 315, and 402 pmol cholesterol esterified/h per ml culture medium (or 414, 828, 1534 and 1957 pmol cholesterol esterified/h per mg cell protein) for 6, 12, 24, and 48 h of culture, respectively. The endogenous cholesterol esterification rate of the culture medium was 47, 104, 224 and 330 pmol/h per ml and apolipoprotein A-I mass was 305, 720, 2400 and 3940 ng/ml culture medium over the same time frame. In contrast to culture medium, low levels of enzyme activity (approximately 10% of that in culture medium at 24 and 48 h) were observed in the extracts of HepG2 cells. The enzyme secreted by HepG2 was found to be similarly activated by apolipoprotein A-I, apolipoprotein E, or apolipoprotein A-IV, and was similarly inhibited by phenylmethylsulfonyl fluoride, dithiobisnitrobenzoate, p-hydroxymercuribenzoate, or iodoacetate as compared to human plasma enzyme. High-performance gel filtration of the culture medium revealed that the HepG2-secreted enzyme was associated with a fraction having a mean apparent molecular weight of approximately 200,000. We concluded that human hepatoma HepG2 cells synthesize and secrete lecithin-cholesterol acyltransferase, which is functionally homologous to the human plasma enzyme.  相似文献   
105.
Studies were conducted to characterize the metabolism of the unusual fatty acid petroselinic acid (18:1cis[delta]6) in developing endosperm of the Umbelliferae species coriander (Coriandrum sativum L.) and carrot (Daucus carota L.). Analyses of fatty acid compositions of glycerolipids of these tissues revealed a dissimilar distribution of petroselinic acid in triacylglycerols (TAG) and the major polar lipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Petroselinic acid comprised 70 to 75 mol% of the fatty acids of TAG but only 9 to 20 mol% of the fatty acids of PC and PE. Although such data appeared to suggest that petroselinic acid is at least partially excluded from polar lipids, results of [1-14C]acetate radiolabeling experiments gave a much different picture of the metabolism of this fatty acid. In time-course labeling of carrot endosperm, [1-14C]acetate was rapidly incorporated into PC in high levels. Through 30 min, radiolabel was most concentrated in PC, and of this, 80 to 85% was in the form of petroselinic acid. One explanation for the large disparity in amounts of petroselinic acid in PC as determined by fatty acid mass analyses and 14C radiolabeling is that turnover of these lipids or the fatty acids of these lipids results in relatively low accumulation of petroselinic acid mass. Consistent with this, the kinetics of [1-14C]acetate time-course labeling of carrot endosperm and "pulse-chase" labeling of coriander endosperm suggested a possible flux of fatty acids from PC into TAG. In time-course experiments, radiolabel initially entered PC at the highest rates but accumulated in TAG at later time points. Similarly, in pulse-chase studies, losses in absolute amounts of radioactivity from PC were accompanied by significant increases of radiolabel in TAG. In addition, stereospecific analyses of unlabeled and [1-14C]acetate-labeled PC of coriander endosperm indicated that petroselinic acid can be readily incorporated into both the sn-1 and sn-2 positions of this lipid. Because petroselinic acid is neither synthesized nor further modified on polar lipids, the apparent metabolism of this fatty acid through PC (and possibly through other polar lipids) may define a function of PC in TAG assembly apart from its involvement in fatty acid modification reactions.  相似文献   
106.
Cat's claw (Doxantha unguis-cati L.) vine accumulates nearly 80% palmitoleic acid (16:1Δ9) plus cis-vaccenic acid (18:1Δ11) in its seed oil. To characterize the biosynthetic origin of these unusual fatty acids, cDNAs for acyl-acyl carrier protein (acyl-ACP) desaturases were isolated from developing cat's claw seeds. The predominant acyl-ACP desaturase cDNA identified encoded a polypeptide that is closely related to the stearoyl (Δ9–18:0)-ACP desaturase from castor (Ricinis communis L.) and other species. Upon expression in Escherichia coli, the cat's claw polypeptide functioned as a Δ9 acyl-ACP desaturase but displayed a distinct substrate specificity for palmitate (16:0)-ACP rather than stearate (18:0)-ACP. Comparison of the predicted amino acid sequence of the cat's claw enzyme with that of the castor Δ9–18:0-ACP desaturase suggested that a single amino acid substitution (L118W) might account in large part for the differences in substrate specificity between the two desaturases. Consistent with this prediction, conversion of leucine-118 to tryptophan in the mature castor Δ9–18:0-ACP desaturase resulted in an 80-fold increase in the relative specificity of this enzyme for 16:0-ACP. The alteration in substrate specificity observed in the L118W mutant is in agreement with a crystallographic model of the proposed substrate-binding pocket of the castor Δ9–18:0-ACP desaturase.  相似文献   
107.
Expression of a plant delta 6-palmitoyl (16:0)-acyl carrier protein desaturase in Escherichia coli resulted in the accumulation of the novel monounsaturated fatty acids delta 6-hexadecenoic acid (16:1 delta 6) and delta 8-octadecenoic acid. Amounts of 16:1 delta 6 accumulated by E. coli were increased more than twofold by the expression of a plant ferredoxin together with the delta 6-16:0-acyl carrier protein desaturase.  相似文献   
108.
Functional genomic studies of many polyploid crops, including rapeseed (Brassica napus), are constrained by limited tool sets. Here we report development of a gain‐of‐function platform, termed ‘iFOX (inducible Full‐length cDNA OvereXpressor gene)‐Hunting’, for inducible expression of B. napus seed cDNAs in Arabidopsis. A Gateway‐compatible plant gene expression vector containing a methoxyfenozide‐inducible constitutive promoter for transgene expression was developed. This vector was used for cloning of random cDNAs from developing B. napus seeds and subsequent Agrobacterium‐mediated transformation of Arabidopsis. The inducible promoter of this vector enabled identification of genes upon induction that are otherwise lethal when constitutively overexpressed and to control developmental timing of transgene expression. Evaluation of a subset of the resulting ~6000 Arabidopsis transformants revealed a high percentage of lines with full‐length B. napus transgene insertions. Upon induction, numerous iFOX lines with visible phenotypes were identified, including one that displayed early leaf senescence. Phenotypic analysis of this line (rsl‐1327) after methoxyfenozide induction indicated high degree of leaf chlorosis. The integrated B. napuscDNA was identified as a homolog of an Arabidopsis acyl‐CoA binding protein (ACBP) gene designated BnACBP1‐like. The early senescence phenotype conferred by BnACBP1‐like was confirmed by constitutive expression of this gene in Arabidopsis and B. napus. Use of the inducible promoter in the iFOX line coupled with RNA‐Seq analyses allowed mechanistic clues and a working model for the phenotype associated with BnACBP1‐like expression. Our results demonstrate the utility of iFOX‐Hunting as a tool for gene discovery and functional characterization of Brassica napus genome.  相似文献   
109.
Modified fatty acids (mFA) have diverse uses; for example, cyclopropane fatty acids (CPA) are feedstocks for producing coatings, lubricants, plastics and cosmetics. The expression of mFA‐producing enzymes in crop and model plants generally results in lower levels of mFA accumulation than in their natural‐occurring source plants. Thus, to further our understanding of metabolic bottlenecks that limit mFA accumulation, we generated transgenic Camelina sativa lines co‐expressing Escherichia coli cyclopropane synthase (EcCPS) and Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT). In contrast to transgenic CPA‐accumulating Arabidopsis, CPA accumulation in camelina caused only minor changes in seed weight, germination rate, oil accumulation and seedling development. CPA accumulated to much higher levels in membrane than storage lipids, comprising more than 60% of total fatty acid in both phosphatidylcholine (PC) and phosphatidylethanolamine (PE) versus 26% in diacylglycerol (DAG) and 12% in triacylglycerol (TAG) indicating bottlenecks in the transfer of CPA from PC to DAG and from DAG to TAG. Upon co‐expression of SfLPAT with EcCPS, di‐CPA‐PC increased by ~50% relative to lines expressing EcCPS alone with the di‐CPA‐PC primarily observed in the embryonic axis and mono‐CPA‐PC primarily in cotyledon tissue. EcCPS‐SfLPAT lines revealed a redistribution of CPA from the sn‐1 to sn‐2 positions within PC and PE that was associated with a doubling of CPA accumulation in both DAG and TAG. The identification of metabolic bottlenecks in acyl transfer between site of synthesis (phospholipids) and deposition in storage oils (TAGs) lays the foundation for the optimizing CPA accumulation through directed engineering of oil synthesis in target crops.  相似文献   
110.
B E Cahoon  J L Hardy  W C Reeves 《In vitro》1978,14(3):255-260
Mosquito cell cultures were initiated from the minced tissues of newly hatched Aedes dorsalis (Meigen) larvae. Continuous cell division occurred only after an adaptive period of approximately 6 months. Optimal growth of the cells required a relatively low pH of 6.5. Karyological studies showed that the cells have remained diploid (2n = 6) for 60 serial passages and that the cultures are free of contaminating cells. The cultures also were shown to be free of bacteria (including Mycoplasma), fungi and virions. Subpopulations (strains) of the original parental cultures have been selected and characterized on the basis of morphology, karyology, growth rate and monolayer formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号