首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   578篇
  免费   48篇
  626篇
  2022年   5篇
  2021年   13篇
  2020年   5篇
  2019年   4篇
  2018年   13篇
  2017年   8篇
  2016年   17篇
  2015年   26篇
  2014年   29篇
  2013年   34篇
  2012年   25篇
  2011年   20篇
  2010年   21篇
  2009年   17篇
  2008年   28篇
  2007年   23篇
  2006年   19篇
  2005年   20篇
  2004年   25篇
  2003年   17篇
  2002年   24篇
  2001年   8篇
  2000年   14篇
  1999年   22篇
  1998年   13篇
  1997年   3篇
  1996年   9篇
  1995年   5篇
  1994年   8篇
  1993年   12篇
  1992年   7篇
  1991年   10篇
  1990年   11篇
  1989年   7篇
  1988年   8篇
  1987年   8篇
  1986年   10篇
  1985年   8篇
  1984年   5篇
  1983年   9篇
  1982年   5篇
  1981年   5篇
  1979年   7篇
  1978年   3篇
  1977年   5篇
  1974年   3篇
  1971年   2篇
  1970年   2篇
  1968年   5篇
  1967年   3篇
排序方式: 共有626条查询结果,搜索用时 0 毫秒
101.
102.
Malaria is a leading cause of worldwide mortality from infectious disease. Plasmodium falciparum proliferation in human erythrocytes requires purine salvage by hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRTase). The enzyme is a target for the development of novel antimalarials. Design and synthesis of transition-state analogue inhibitors permitted cocrystallization with the malarial enzyme and refinement of the complex to 2.0 A resolution. Catalytic site contacts in the malarial enzyme are similar to those of human hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) despite distinct substrate specificity. The crystal structure of malarial HGXPRTase with bound inhibitor, pyrophosphate, and two Mg(2+) ions reveals features unique to the transition-state analogue complex. Substrate-assisted catalysis occurs by ribooxocarbenium stabilization from the O5' lone pair and a pyrophosphate oxygen. A dissociative reaction coordinate path is implicated in which the primary reaction coordinate motion is the ribosyl C1' in motion between relatively immobile purine base and (Mg)(2)-pyrophosphate. Several short hydrogen bonds form in the complex of the enzyme and inhibitor. The proton NMR spectrum of the transition-state analogue complex of malarial HGXPRTase contains two downfield signals at 14.3 and 15.3 ppm. Despite the structural similarity to the human enzyme, the NMR spectra of the complexes reveal differences in hydrogen bonding between the transition-state analogue complexes of the human and malarial HG(X)PRTases. The X-ray crystal structures and NMR spectra reveal chemical and structural features that suggest a strategy for the design of malaria-specific transition-state inhibitors.  相似文献   
103.
104.

Background

Oxidoreductases are enzymes that catalyze many redox reactions in normal and neoplastic cells. Their actions include catalysis of the transformation of free, neutral oxygen gas into oxygen free radicals, superoxide, hydroperoxide, singlet oxygen and hydrogen peroxide. These activated forms of oxygen contribute to oxidative stress that modifies lipids, proteins, DNA and carbohydrates. On the other hand, oxidoreductases constitute one of the most important free radical scavenger systems typified by catalase, superoxide dismutase and glutathione peroxidase. In this work, proteomics, Gene Ontology mapping and Directed Acyclic Graphs (DAG) are employed to detect and quantify differential oxidoreductase enzyme expressions between HepG2 cells and normal human liver tissues.

Results

For the set of bioinformatics calculations whose BLAST searches are performed using the BLAST program BLASTP 2.2.13 [Nov-27-2005], DAG of the Gene Ontology's Molecular Function annotations show that oxidoreductase activity parent node of the liver proteome contains 331 annotated protein sequences, 7 child nodes and an annotation score of 188.9, whereas that of HepG2 cells has 188 annotated protein sequences, 3 child nodes and an annotation score of only 91.9. Overwhelming preponderance of oxidoreductases in the liver is additionally supported by the isomerase DAGs: nearly all the reactions described in the normal liver isomerase DAG are oxidoreductase isomerization reactions, whereas only one of the three child nodes in the HepG2 isomerase DAG is oxidoreductase. Upon normalization of the annotation scores to the parent Molecular Function nodes, oxidoreductases are down-regulated in HepG2 cells by 58%. Similarly, for the set of bioinformatics calculations whose BLAST searches are carried out using BLASTP 2.2.15 [Oct-15-2006], oxidoreductases are down-regulated in HepG2 cells by 56%.

Conclusion

Proteomics and Gene Ontology reveal, for the first time, differential enzyme activities between HepG2 cells and normal human liver tissues, which may be a promising new prognostic marker of Hepatocellular carcinoma. Two independent sets of bioinformatics calculations that employ two BLAST program versions, and searched different databases, arrived at essentially the same conclusion: oxidoreductases are down-regulated in HepG2 cells by approximately 57%, when compared to normal human liver tissues. Down-regulation of oxidoreductases in hepatoma is additionally supported by Gene Ontology analysis of isomerises.  相似文献   
105.

Background

An important step in the proteomics of solid tumors, including breast cancer, consists of efficiently extracting most of proteins in the tumor specimen. For this purpose, Radio-Immunoprecipitation Assay (RIPA) buffer is widely employed. RIPA buffer's rapid and highly efficient cell lysis and good solubilization of a wide range of proteins is further augmented by its compatibility with protease and phosphatase inhibitors, ability to minimize non-specific protein binding leading to a lower background in immunoprecipitation, and its suitability for protein quantitation.

Results

In this work, the insoluble matter left after RIPA buffer extraction of proteins from breast tumors are subjected to another extraction step, using a urea-based buffer. It is shown that RIPA and urea lysis buffers fractionate breast tissue proteins primarily on the basis of molecular weights. The average molecular weight of proteins that dissolve exclusively in urea buffer is up to 60% higher than in RIPA. Gene Ontology (GO) and Directed Acyclic Graphs (DAG) are used to map the collective biological and biophysical attributes of the RIPA and urea proteomes. The Cellular Component and Molecular Function annotations reveal protein solubilization preferences of the buffers, especially the compartmentalization and functional distributions. It is shown that nearly all extracellular matrix proteins (ECM) in the breast tumors and matched normal tissues are found, nearly exclusively, in the urea fraction, while they are mostly insoluble in RIPA buffer. Additionally, it is demonstrated that cytoskeletal and extracellular region proteins are more soluble in urea than in RIPA, whereas for nuclear, cytoplasmic and mitochondrial proteins, RIPA buffer is preferred. Extracellular matrix proteins are highly implicated in cancer, including their proteinase-mediated degradation and remodelling, tumor development, progression, adhesion and metastasis. Thus, if they are not efficiently extracted by RIPA buffer, important information may be missed in cancer research.

Conclusion

For proteomics of solid tumors, a two-step extraction process is recommended. First, proteins in the tumor specimen should be extracted with RIPA buffer. Second, the RIPA-insoluble material should be extracted with the urea-based buffer employed in this work.  相似文献   
106.
Structural plasticity of excitatory synapses is a vital component of neuronal development, synaptic plasticity and behavior, and its malfunction underlies many neurodevelopmental and psychiatric disorders. However, the molecular mechanisms that control dendritic spine morphogenesis have only recently emerged. We summarize recent work that has revealed an important connection between calcium/calmodulin-dependent kinases (CaMKs) and guanine-nucleotide-exchange factors (GEFs) that activate the small GTPase Rac (RacGEFs) in controlling dendritic spine morphogenesis. These two groups of molecules function in neurons as a unique signaling cassette that transduces calcium influx into small GTPase activity and, thence, actin reorganization and spine morphogenesis. Through this pathway, CaMKs and RacGEFs amplify calcium signals and translate them into spatially and temporally regulated structural remodeling of dendritic spines.  相似文献   
107.
An increased availability of genotypes at marker loci has prompted the development of models that include the effect of individual genes. Selection based on these models is known as marker-assisted selection (MAS). MAS is known to be efficient especially for traits that have low heritability and non-additive gene action. BLUP methodology under non-additive gene action is not feasible for large inbred or crossbred pedigrees. It is easy to incorporate non-additive gene action in a finite locus model. Under such a model, the unobservable genotypic values can be predicted using the conditional mean of the genotypic values given the data. To compute this conditional mean, conditional genotype probabilities must be computed. In this study these probabilities were computed using iterative peeling, and three Markov chain Monte Carlo (MCMC) methods – scalar Gibbs, blocking Gibbs, and a sampler that combines the Elston Stewart algorithm with iterative peeling (ESIP). The performance of these four methods was assessed using simulated data. For pedigrees with loops, iterative peeling fails to provide accurate genotype probability estimates for some pedigree members. Also, computing time is exponentially related to the number of loci in the model. For MCMC methods, a linear relationship can be maintained by sampling genotypes one locus at a time. Out of the three MCMC methods considered, ESIP, performed the best while scalar Gibbs performed the worst.  相似文献   
108.

Background  

Assortative mating patterns for mate quality traits like body size are often observed in nature. However, the underlying mechanisms that cause assortative mating patterns are less well known. Sexual selection is one important explanation for assortment, suggesting that i) one (usually the female) or both sexes could show preferences for mates of similar size or ii) mutual mate choice could resolve sexual conflict over quality traits into assortment. We tested these hypotheses experimentally in the socially monogamous cichlid fish Pelvicachromis taeniatus, in which mate choice is mutual.  相似文献   
109.
The tangles of Alzheimer's disease (AD) are comprised of the tau protein displaying numerous alterations, including phosphorylation at serine 422 (S422) and truncation at aspartic acid 421 (D421). Truncation at the latter site appears to result from activation of caspases, a class of proteases that cleave specifically at aspartic acid residues. It has been proposed that phosphorylation at or near caspase cleavage sites could regulate the ability of the protease to cleave at those sites. Here, we use tau pseudophosphorylated at S422 (S422E) to examine the effects of tau phosphorylation on its cleavage by caspase 3. We find that S422E tau is more resistant to proteolysis by caspase 3 than non-pseudophosphorylated tau. Additionally, we use antibodies directed against the phosphorylation site and against the truncation epitope to assess the presence of these epitopes in neurofibrillary tangles in the aged human brain. We show that phosphorylation precedes truncation during tangle maturation. Moreover, the distribution of the two epitopes suggests that a significant length of time (perhaps as much as two decades) elapses between S422 phosphorylation and cleavage at D421. We further conclude that tau phosphorylation at S422 may be a protective mechanism that inhibits cleavage in vivo.  相似文献   
110.
Many animal species tolerate different amounts of predation risk based on environmental conditions and the individual's own condition, often accepting greater risk when energetically stressed. We studied the sensitive plant Mimosa pudica to see whether it too accepts greater risk of predation when less light energy is available. This plant displays a defensive behavior of rapidly folding its leaves when stimulated by touch, thereby decreasing visibility to herbivores. Averting herbivory involves a trade-off because leaf closure results in a reduction in light foraging. We manipulated the light environment of individual M. pudica plants and recorded the time it took a plant to reopen its leaves following stimulation as a measure of tolerance of predation risk. As predicted by theory, avoidance behavior was sustained longer under high light conditions than under more light-limited conditions. These findings suggest this species balances the risk and reward of antiherbivore behavior in relation to current environmental conditions and that behavioral-ecological theory is a useful framework for understanding plant responses to predators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号