首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   544篇
  免费   34篇
  国内免费   1篇
  579篇
  2024年   2篇
  2022年   7篇
  2021年   16篇
  2020年   5篇
  2019年   12篇
  2018年   12篇
  2017年   9篇
  2016年   20篇
  2015年   25篇
  2014年   36篇
  2013年   44篇
  2012年   43篇
  2011年   40篇
  2010年   26篇
  2009年   26篇
  2008年   42篇
  2007年   27篇
  2006年   31篇
  2005年   16篇
  2004年   29篇
  2003年   17篇
  2002年   17篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1996年   2篇
  1995年   3篇
  1993年   2篇
  1991年   3篇
  1990年   2篇
  1988年   2篇
  1986年   3篇
  1985年   2篇
  1984年   5篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1977年   2篇
  1976年   5篇
  1970年   2篇
  1958年   1篇
  1956年   1篇
  1955年   1篇
  1953年   2篇
  1952年   1篇
  1950年   1篇
  1945年   1篇
  1935年   1篇
排序方式: 共有579条查询结果,搜索用时 15 毫秒
521.
The local generation of active glucocorticoid by NADPH-dependent, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) oxoreductase activity, has emerged as an important factor in regulating hepatic glucose output and visceral adiposity. We have proposed that this NADPH is generated within the endoplasmic reticulum by the enzyme hexose-6-phosphate dehydrogenase. To address this hypothesis, we generated mice with a targeted inactivation of the H6PD gene. These mice were unable to convert 11-dehydrocorticosterone (11-DHC) to corticosterone but demonstrated increased corticosterone to 11-DHC conversion consistent with lack of 11beta-HSD1 oxoreductase and a concomitant increase in dehydrogenase activity. This increased corticosterone clearance in the knock-out mice resulted in a reduction in circulating corticosterone levels. Our studies define the critical requirement of hexose-6-phosphate dehydrogenase for 11beta-HSD1 oxoreductase activity and add a new dimension to the investigation of 11beta-HSD1 as a therapeutic target in patients with the metabolic syndrome.  相似文献   
522.
The gain and loss of genes during 600 million years of vertebrate evolution   总被引:1,自引:1,他引:0  

Background  

Gene duplication is assumed to have played a crucial role in the evolution of vertebrate organisms. Apart from a continuous mode of duplication, two or three whole genome duplication events have been proposed during the evolution of vertebrates, one or two at the dawn of vertebrate evolution, and an additional one in the fish lineage, not shared with land vertebrates. Here, we have studied gene gain and loss in seven different vertebrate genomes, spanning an evolutionary period of about 600 million years.  相似文献   
523.
To engineer a host cell line that produces defucosylated mAbs with superior antibody‐dependent cellular cytotoxicity, we disrupted α‐1, 6 fucosyltransferase (FUT8 ) gene in CHO‐S (CHO is Chinese hamster ovary) cells by clustered regularly interspaced short palindromic repeats‐CRISPR associated nuclease 9. The gene knockout cell line was evaluated for growth, stability, and product quality. The growth profile of FUT8 gene knockout CHO‐S (FUT8 ?/?) cells was comparable with wild type CHO‐S cells. FUT8 catalyzes the transfer of a fucose residue from GDP‐fucose to N‐glycans residue. Defucosylated IgG1 antibodies produced by FUT8 ?/? cells showed increased binding affinities to human FcγRIIIa and higher activities in mediating antibody‐dependent cellular cytotoxicity, comparing with conventional fucosylated IgG1. Our results demonstrated the potential of using the clustered regularly interspaced short palindromic repeats‐CRISPR associated nuclease 9 technology in cell line engineering for biopharmaceutical industrial applications.  相似文献   
524.

Background

The gene family-free framework for comparative genomics aims at providing methods for gene order analysis that do not require prior gene family assignment, but work directly on a sequence similarity graph. We study two problems related to the breakpoint median of three genomes, which asks for the construction of a fourth genome that minimizes the sum of breakpoint distances to the input genomes.

Methods

We present a model for constructing a median of three genomes in this family-free setting, based on maximizing an objective function that generalizes the classical breakpoint distance by integrating sequence similarity in the score of a gene adjacency. We study its computational complexity and we describe an integer linear program (ILP) for its exact solution. We further discuss a related problem called family-free adjacencies for k genomes for the special case of \(k \le 3\) and present an ILP for its solution. However, for this problem, the computation of exact solutions remains intractable for sufficiently large instances. We then proceed to describe a heuristic method, FFAdj-AM, which performs well in practice.

Results

The developed methods compute accurate positional orthologs for genomes comparable in size of bacterial genomes on simulated data and genomic data acquired from the OMA orthology database. In particular, FFAdj-AM performs equally or better when compared to the well-established gene family prediction tool MultiMSOAR.

Conclusions

We study the computational complexity of a new family-free model and present algorithms for its solution. With FFAdj-AM, we propose an appealing alternative to established tools for identifying higher confidence positional orthologs.
  相似文献   
525.
526.
527.
Analysis of microbial biodiversity is hampered by a lack of reference genomes from most bacteria, viruses, and algae. This necessitates either the cultivation of a restricted number of species for standard sequencing projects or the analysis of highly complex environmental DNA metagenome data. Single‐cell genomics (SCG) offers a solution to this problem by constraining the studied DNA sample to an individual cell and its associated symbionts, prey, and pathogens. We used SCG to study marine heterotrophic amoebae related to Paulinella ovalis (A. Wulff) P.W. Johnson, P.E. Hargraves & J.M. Sieburth (Rhizaria). The genus Paulinella is best known for its photosynthetic members such as P. chromatophora Lauterborn that is the only case of plastid primary endosymbiosis known outside of algae and plants. Here, we studied the phagotrophic sister taxa of P. chromatophora that are related to P. ovalis and found one SCG assembly to contain α‐cyanobacterial DNA. These cyanobacterial contigs are presumably derived from prey. We also uncovered an associated cyanophage lineage (provisionally named phage PoL_MC2). Phylogenomic analysis of the fragmented genome assembly suggested a minimum genome size of 200 Kbp for phage PoL_MC2 that encodes 179 proteins and is most closely related to Synechococcus phage S‐SM2. For this phage, gene network analysis demonstrates a highly modular genome structure typical of other cyanophages. Our work demonstrates that SCG is a powerful approach for discovering algal and protist biodiversity and for elucidating biotic interactions in natural samples.  相似文献   
528.
The interactions of nuclear lamins with the chromatin fiber play an important role in regulating nuclear architecture and chromatin function; however, the full spectrum of these interactions is not known. We report that the N-terminal domain of the nucleosome-binding protein HMGN5 interacts with the C-terminal domain of the lamin-binding protein LAP2α and that these proteins reciprocally alter their interaction with chromatin. Chromatin immunoprecipitation analysis of cells lacking either HMGN5 or LAP2α reveals that loss of either protein affects the genome-wide distribution of the remaining partner. Our study identifies a new functional link between chromatin-binding and lamin-binding proteins.  相似文献   
529.
The gene transfer agent produced by Rhodobacter capsulatus (RcGTA) resembles a small tailed bacteriophage that packages almost random genomic DNA segments that may be transferred to other R. capsulatus cells. Gene transfer agents are produced by a number of prokaryotes; however, no receptors have been identified. We investigated the RcGTA recipient capability of wild‐type R. capsulatus cells at different culture growth phases, and found that the frequency of RcGTA‐dependent acquisition of an allele increases as cultures enter the stationary phase. We also found that RcGTA adsorption to cells follows a similar trend. RcGTA recipient capability and adsorption were found to be dependent on the GtaR/I quorum‐sensing (QS) system. Production of an extracellular polysaccharide was found to be regulated by GtaR/I QS, as was production of the cell capsule. A number of QS‐regulated putative polysaccharide biosynthesis genes were identified, and mutagenesis of two of these genes, rcc01081 and rcc01932, yielded strains that lack a capsule. Furthermore, these mutants were impaired in RcGTA recipient capability and adsorption, as was a non‐encapsulated wild‐type isolate of R. capsulatus. Overall, our results indicate that capsular polysaccharide is a receptor for the gene transfer agent of R. capsulatus, RcGTA.  相似文献   
530.
Abstract The midgut of most insects is lined with a semipermeable acellular tube, the peritrophic matrix (PM), composed of chitin and proteins. Although various genes encoding PM proteins have been characterized, our understanding of their roles in PM structure and function is very limited. One promising approach for obtaining functional information is RNA interference, which has been used to reduce the levels of specific mRNAs using double‐stranded RNAs administered to larvae by either injection or feeding. Although this method is well documented in dipterans and coleopterans, reports of its success in lepidopterans are varied. In the current study, the silencing midgut genes encoding PM proteins (insect intestinal mucin 1, insect intestinal mucin 4, PM protein 1) and the chitin biosynthetic or modifying enzymes (chitin synthase‐B and chitin deacetylase 1) in a noctuid lepidopteran, Mamestra configurata, was examined in vitro and in vivo. In vitro studies in primary midgut epithelial cell preparations revealed an acute and rapid silencing (by 24 h) for the gene encoding chitin deacetylase 1 and a slower rate of silencing (by 72 h) for the gene encoding PM protein 1. Genes encoding insect intestinal mucins were slightly silenced by 72 h, whereas no silencing was detected for the gene encoding chitin synthase‐B. In vivo experiments focused on chitin deacetylase 1, as the gene was silenced to the greatest extent in vitro. Continuous feeding of neonates and fourth instar larvae with double‐stranded RNA resulted in silencing of chitin deacetylase 1 by 24 and 36 h, respectively. Feeding a single dose to neonates also resulted in silencing by 24 h. The current study demonstrates that genes encoding PM proteins can be silenced and outlines conditions for RNA interference by per os feeding in lepidopterans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号