首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   3篇
  47篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   5篇
  2011年   1篇
  2010年   3篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  1995年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
31.
32.
33.
34.
Molecular Biology Reports - The Fibulins are a recently discovered family of extracellular matrix proteins. In this study, expression levels of the fibulin-2 (FBLN2) gene and its role in the...  相似文献   
35.
A massive neutrophil influx in the intestine is the histopathological hallmark of Salmonella enterica serovar Typhimurium-induced enterocolitis in humans. Two major hypotheses on the mechanism leading to neutrophil infiltration in the intestinal mucosa have emerged. One hypothesis suggests that S. enterica serovar Typhimurium takes an active role in triggering this host response by injecting proteins, termed effectors, into the host cell cytosol which induce a proinflammatory gene expression profile in the intestinal epithelium. The second hypothesis suggests a more passive role for the pathogen by proposing that bacterial invasion stimulates the innate pathways of inflammation because the pathogen-associated molecular patterns of S. enterica serovar Typhimurium are recognized by pathogen recognition receptors on cells in the lamina propria. A review of the current literature reveals that, while pathogen recognition receptors are clearly involved in eliciting neutrophil influx during S. enterica serovar Typhimurium infection, a direct contribution of effectors in triggering proinflammatory host cell responses cannot currently be ruled out.  相似文献   
36.
Embryos of Helisoma trivolvis exhibit cilia-driven rotation within the egg capsule during development. In this study we examined whether nitric oxide (NO) is a physiological regulator of ciliary beating in cultured ciliary cells. The NO donor S-nitroso-N-acetylpenicillamine (SNAP; 1-1,000 microM) produced a dose-dependent increase in ciliary beat frequency (CBF). In contrast, the nitric oxide synthase (NOS) inhibitor 7-nitroindazole (10 and 100 microM) inhibited the basal CBF and blocked the stimulatory effects of serotonin (100 microM). NO production in response to serotonin was investigated with 4,5-diaminofluorescein diacetate imaging. Although SNAP (100 microM) produced a rise in NO levels in all cells, only 22% of cells responded to serotonin with a moderate increase. The cGMP analog 8-bromo-cGMP (8-Br-cGMP; 0.2 and 2 mM) increased CBF, and the soluble guanylate cyclase inhibitor LY-83583 (10 microM) blocked the cilioexcitatory effects of SNAP and serotonin. These data suggest that NO has a constitutive cilioexcitatory effect in Helisoma embryos and that the stimulatory effects of serotonin and NO work through a cGMP pathway. It appears that in Helisoma cilia, NO activity is necessary, but not sufficient, to fully mediate the cilioexcitatory action of serotonin.  相似文献   
37.
Matricellular proteins, such as thrombospondins (TSPs1-4), SPARC, SPARC-like1 (hevin) and tenascin C are expressed by astrocytes in the central nervous system (CNS) of rodents. The spatial and temporal expression patterns of these proteins suggest that they may be involved in important developmental processes such as cell proliferation and maturation, cell migration, axonal guidance and synapse formation. In addition, upon injury to the nervous system the expression of these proteins is upregulated, suggesting that they play a role in tissue remodeling and repair in the adult CNS. The genes encoding these proteins have been disrupted in mice. Interestingly, none of these proteins are required for survival, and furthermore, there are no evident abnormalities at the gross anatomical level in the CNS. However, detailed analyses of some of these mice in the recent years have revealed interesting CNS phenotypes. Here we will review the expression of these proteins in the CNS. We will discuss a newly described function for thrombospondins in synapse formation in the CNS in detail, and speculate whether other matricellular proteins could play similar roles in nervous system development and function.  相似文献   
38.
Risher WC  Eroglu C 《Matrix biology》2012,31(3):170-177
Thrombospondins (TSPs) are a family of large, oligomeric multidomain glycoproteins that participate in a variety of biological functions as part of the extracellular matrix (ECM). Through their associations with a number of binding partners, TSPs mediate complex cell-cell and cell-matrix interactions in such diverse processes as angiogenesis, inflammation, osteogenesis, cell proliferation, and apoptosis. It was recently shown in the developing central nervous system (CNS) that TSPs promote the formation of new synapses, which are the unique cell-cell adhesions between neurons in the brain. This increase in synaptogenesis is mediated by the interaction between astrocyte-secreted TSPs and their neuronal receptor, calcium channel subunit α2δ-1. The cellular and molecular mechanisms that underlie induction of synaptogenesis via this interaction are yet to be fully elucidated. This review will focus on what is known about TSP and synapse formation during development, possible roles for TSP following brain injury, and what the previously established actions of TSP in other biological tissues may tell us about the mechanisms underlying TSP's functions in CNS synaptogenesis.  相似文献   
39.

Background aims

TNFR family member glucocorticoid-induced tumor necrosis factor–related receptor (GITR/TNFRSF18) activation by its ligand glucocorticoid-induced TNF-related receptor ligand (GITRL) have important roles in proliferation, death and differentiation of cells. Some types of small cell lung cancers (SCLCs) express GITR. Because mesenchymal stromal cells (MSCs) may target tumor cells, we aimed to investigate the effect of MSCs carrying GITRL overexpressing plasmid on the proliferation and viability of a GITR+ SCLC cell line (SCLC-21H) compared with a GITR SCLC cell line (NCI-H82).

Methods

Electroporation was used to transfer pGITRL (GITRL gene carrying plasmid) or pCR3 (mock plasmid) into MSCs. Flow cytometry and semi-quantitative polymerase chain reaction were used to characterize the transfected MSCs. Following SCLC-21H or NCI-H82 cell lines were co-cultured with pGITRL-MSCs.

Results

Proliferation of NCI-H82 was increased in all types of co-cultures while SCLC-21H cells did not. GITRL expressing MSCs were able to induce cell death of SCLC-21H through the upregulation of SIVA1 apoptosis inducing factor.

Conclusions

The influence of MSCs on SCLC cells can vary according to the cancer cell subtypes as obtained in SCLC-21H and NCI-H82 and enabling GITR-GITRL interaction can induce cell death of SCLC cell lines.  相似文献   
40.

Background

Genomic instability is a hallmark of cancer cells, and this cellular phenomenon can emerge as a result of replicative stress. It is possible to take advantage of replicative stress, and enhance it in a targeted way to fight cancer cells. One of such strategies involves targeting the cell division cycle 7-related protein kinase (CDC7), a protein with key roles in regulation of initiation of DNA replication. CDC7 overexpression is present in different cancers, and small molecule inhibitors of the CDC7 have well-documented anti-tumor effects. Here, we aimed to test the potential of CDC7 inhibition as a new strategy for glioblastoma treatment.

Methods

PHA-767491 hydrochloride was used as the CDC7 inhibitor. Two glioblastoma cell lines (U87-MG and U251-MG) and a control cell line (3T3) were used to characterize the effects of CDC7 inhibition. The effect of CDC7 inhibition on cell viability, cell proliferation, apoptosis, migration, and invasion were analyzed. In addition, real-time PCR arrays were used to identify the differentially expressed genes in response to CDC7 inhibition.

Results

Our results showed that CDC7 inhibition reduces glioblastoma cell viability, suppresses cell proliferation, and triggers apoptosis in glioblastoma cell lines. In addition, we determined that CDC7 inhibition also suppresses glioblastoma cell migration and invasion. To identify molecular targets of CDC7 inhibition, we used real-time PCR arrays, which showed dysregulation of several mRNAs and miRNAs.

Conclusions

Taken together, our findings suggest that CDC7 inhibition is a promising strategy for treatment of glioblastoma.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号