首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   25篇
  2021年   2篇
  2019年   2篇
  2018年   5篇
  2017年   2篇
  2016年   3篇
  2015年   7篇
  2014年   8篇
  2013年   9篇
  2012年   12篇
  2011年   10篇
  2010年   5篇
  2009年   8篇
  2008年   7篇
  2007年   12篇
  2006年   6篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   17篇
  2001年   7篇
  2000年   6篇
  1999年   7篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1992年   7篇
  1991年   5篇
  1990年   4篇
  1989年   12篇
  1988年   9篇
  1987年   3篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   5篇
  1981年   2篇
  1980年   8篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   3篇
  1971年   1篇
排序方式: 共有236条查询结果,搜索用时 296 毫秒
71.
72.
This study was aimed at assessing the relative contributions to H(2)O(2) detoxification by glutathione peroxidase and catalase in the mitochondrial matrix of heart. For this purpose, mitoplasts from rat heart were used in order to minimize contamination with microperoxisomes, and the kinetic rate constants of both enzymatic activities were determined along with a simulation profile. Results show that the contribution of catalase to H(2)O(2) removal in heart mitochondria is not significant, even under strong oxidative conditions, such as those achieved in ischemia-reperfusion and involving extensive glutathione depletion and high H(2)O(2) concentrations. Conversely, maintenance of the steady state levels of H(2)O(2) in the heart mitochondrial matrix seems to be the domain of glutathione peroxidase. It is suggested that the physiological role of the low amounts of catalase found in heart mitochondria is related to its peroxidatic rather than catalatic activity.  相似文献   
73.
74.
75.
76.
Mitochondrial abnormalities are associated with cancer development, yet how oncogenic signals affect mitochondrial functions has not been fully understood. In this study, we investigate the relationship between mitochondrial alterations and PI3K/protein kinase B (AKT) signaling activation using hepatocytes and liver tissues as our experimental models. We show here that liver-specific deletion of Pten, which leads to activation of PI3K/AKT, is associated with elevated oxidative stress, increased mitochondrial mass, and augmented respiration accompanied by enhanced glycolysis. Consistent with these observations, estrogen-related receptor α (ERRα), an orphan nuclear receptor known for its role in mitochondrial biogenesis, is up-regulated in the absence of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Our pharmacological and genetic studies show that PI3K/AKT activity regulates the expression of ERRα and mitochondrial biogenesis/respiration. Furthermore, cAMP-response element-binding protein, as a downstream target of AKT, plays a role in the regulation of ERRα, independent of PKA signaling. ERRα regulates reactive oxygen species production, and ERRα knockdown attenuates proliferation and colony-forming potential in Pten-null hepatocytes. Finally, analysis of clinical datasets from liver tissues showed a negative correlation between expressions of ERRα and PTEN in patients with liver cancer. Therefore, this study has established a previously unrecognized link between a growth signal and mitochondrial metabolism.  相似文献   
77.
Phytohormones are central players in sensing and signaling numerous environmental conditions like drought stress. In this work, an experimental system based on severe drought was established and hormone profiling together with gene expression of key enzymes involved in abscisic acid (ABA) and jasmonic acid (JA) biosynthesis was studied in roots of citrumelo CPB 4475 (a commercial citrus rootstock) plants. JA concentration transiently increased after a few hours of stress, returning to control levels 30 h after the onset of the condition. A more progressive ABA accumulation was observed, with the onset of this increase at the same time or right after the JA transient accumulation. Molecular data suggested that, at least, part of the hormonal regulation takes place at the biosynthetic level. These observations also pointed to a possible involvement of JA on ABA biosynthesis under stress. To test this hypothesis, JA and ABA biosynthesis were chemically inhibited and subsequently phenotypes rescued by the addition of exogenous hormones. Results showed that the early JA accumulation was necessary for the subsequent ABA increase in roots under stress whereas the opposite could not be stated. The model includes a burst of JA in roots of citrus under severe drought stress conditions that leads to a more progressive ABA accumulation that will induce later plant responses. The present work adds a new level of interaction between JA and ABA at the biosynthetic level that together with the previously described interaction between signal transduction cascades of the two hormones would allow plants to fine‐tune specific responses to different stimuli.  相似文献   
78.
Reversed micelles were used as a cytoplasmic model to study the effect of the multi-ionic equilibria on kinetics of extreme halophilic enzymes. The enzymatic system used was an alkaline p-nitrophenylphosphate phosphatase from the halophilic archaeon Halobacterium salinarum (earlier halobium). This enzyme was solubilised in reversed micelles of hexadecyltrimethylammonium bromide in cyclohexane, with 1-butanol as co-surfactant. The p-nitrophenylphosphate phosphatase is a good system to study the regulation of the enzymatic activity, because it utilises manganese, water and potassium or sodium as cofactors and reacts with p-nitrophenylphosphate. Kinetic behaviour was determined by the ratio between [Mn2+] and [Na+] or [K+]. When the [Mn2+] increased and [Na+] or [K+] decreased, the kinetics showed cooperative behaviour. Rabin's model describes the kinetic behaviour of the p-nitrophenylphosphate phosphatase in reversed micelles.  相似文献   
79.
Nitric oxide (NO) is a widespread biological messenger that has many physiological and pathophysiological roles. Most of the physiological actions of NO are mediated through the activation of sGC (soluble guanylate cyclase) and the subsequent production of cGMP. NO also binds to the binuclear centre of COX (cytochrome c oxidase) and inhibits mitochondrial respiration in competition with oxygen and in a reversible manner. Although sGC is more sensitive to endogenous NO than COX at atmospheric oxygen tension, the more relevant question is which enzyme is more sensitive at physiological oxygen concentration. Using a system in which NO is generated inside the cells in a finely controlled manner, we determined cGMP accumulation by immunoassay and mitochondrial oxygen consumption by high-resolution respirometry at 30 microM oxygen. In the present paper, we report that the NO EC50 of sGC was approx. 2.9 nM, whereas that required to achieve IC50 of respiration was 141 nM (the basal oxygen consumption in the absence of NO was 14+/-0.8 pmol of O2/s per 10(6) cells). In accordance with this, the NO-cGMP signalling transduction pathway was activated at lower NO concentrations than the AMPKs (AMP-activated protein kinase) pathway. We conclude that sGC is approx. 50-fold more sensitive than cellular respiration to endogenous NO under our experimental conditions. The implications of these results for cell physiology are discussed.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号