首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   847篇
  免费   67篇
  914篇
  2022年   9篇
  2021年   19篇
  2020年   11篇
  2019年   19篇
  2018年   25篇
  2017年   19篇
  2016年   18篇
  2015年   34篇
  2014年   48篇
  2013年   40篇
  2012年   63篇
  2011年   56篇
  2010年   37篇
  2009年   42篇
  2008年   56篇
  2007年   37篇
  2006年   40篇
  2005年   32篇
  2004年   33篇
  2003年   21篇
  2002年   21篇
  2001年   31篇
  2000年   16篇
  1999年   19篇
  1998年   11篇
  1997年   8篇
  1996年   5篇
  1995年   9篇
  1994年   6篇
  1993年   9篇
  1992年   5篇
  1991年   8篇
  1990年   12篇
  1989年   7篇
  1988年   10篇
  1987年   7篇
  1986年   8篇
  1985年   4篇
  1983年   8篇
  1982年   6篇
  1981年   4篇
  1980年   3篇
  1979年   5篇
  1978年   5篇
  1977年   3篇
  1974年   3篇
  1972年   4篇
  1971年   4篇
  1968年   2篇
  1961年   2篇
排序方式: 共有914条查询结果,搜索用时 15 毫秒
31.
Polycationic peptides may present their C-termini in either amidated or acidic form; however, the effects of these conformations on the mechanisms of interaction with the membranes in general were not properly investigated up to now. Protonectarina-MP mastoparan with an either amidated or acidic C-terminus was utilized to study their interactions with anionic and zwitterionic vesicles, using measurements of dye leakage and a combination of H/D exchange and mass spectrometry to monitor peptide–membrane interactions. Mast cell degranulation, hemolysis and antibiosis assays were also performed using these peptides, and the results were correlated with the structural properties of the peptides. The C-terminal amidation promotes the stabilization of the secondary structure of the peptide, with a relatively high content of helical conformations, permitting a deeper interaction with the phospholipid constituents of animal and bacterial cell membranes. The results suggested that at low concentrations Protonectarina-MP interacts with the membranes in a way that both terminal regions remain positioned outside the external surface of the membrane, while the α-carbon backbone becomes partially embedded in the membrane core and changing constantly the conformation, and causing membrane destabilization. The amidation of the C-terminal residue appears to be responsible for the stabilization of the peptide conformation in a secondary structure that is richer in α-helix content than its acidic congener. The helical, amphipathic conformation, in turn, allows a deeper peptide–membrane interaction, favoring both biological activities that depend on peptide structure recognition by the GPCRs (such as exocytosis) and those activities dependent on membrane perturbation (such as hemolysis and antibiosis).  相似文献   
32.
Summary The intergeneric amphiploid Hordeum chilense × Aegilops squarrosa has been synthesized. The amphiploid plants have the expected chromosome number of 28. The average meiotic chromosome pairing was 12.48 bivalents + 3.04 univalents. The morphology of the amphiploid resembles that of the Aegilops parent. Nucleoli from both H. chilense and A. squarrosa are expressed in the amphiploid. Neither chromosome instability nor homoeologous pairing was found. The amphiploid is fertile and vigorous.  相似文献   
33.
Cell-to-support interaction and cell-to-cell aggregation phenomena have been studied in a model system composed of intact yeast cells and Phenyl-Streamline adsorbents. Biomass components and beaded adsorbents were characterized by contact angle determinations with three diagnostic liquids and zeta potential measurements. Subsequently, free energy of interaction vs. distance profiles between interacting surfaces was calculated in the aqueous media provided by operating mobile phases. The effect of pH and ammonium sulphate concentration within the normal operating ranges was evaluated. Calculation indicated that moderate interaction between cell particles and adsorbent beads can develop in the presence of salt. Cell-to-cell aggregation was suspected to occur at high salt concentration and neutral pH. Predictions based on the application of the XDLVO approach were confirmed by independent experimental methods like biomass deposition experiments and laser diffraction spectroscopy. Understanding biomass attachment onto hydrophobic supports can help in alleviating process limitations normally encountered during expanded bed adsorption of bioproducts.  相似文献   
34.
35.
Amyloid fibrils, originally associated with neurodegenerative diseases, are now recognized to have interesting mechanical properties. By using synchrotron x-ray diffraction at high pressure in a diamond anvil cell we determined the bulk modulus of TTR105-115 amyloid fibrils in water and in silicone oil to be 2.6 and 8.1 GPa, respectively. The compression characteristics of the fibrils are quite different in the two media, revealing the presence of cavities along the axis of the fibrils, but not between the β-sheets, which are separated by a dry interface as in a steric zipper motif. Our results emphasize the importance of peptide packing in determining the structural and mechanical properties of amyloid fibrils.  相似文献   
36.
The achaete-scute complex (AS-C) and the daughterless (da) genes encode helix-loop-helix proteins which have been shown to interact in vivo and to be required for neurogenesis. We show in vitro that heterodimers of three AS-C products with DA bind DNA strongly, whereas DA homodimers bind weakly and homo or heterocombinations of AS-C products not at all. Proteins unable to dimerize did not bind DNA. Target sequences for the heterodimers were found in the promoters of the hunchback and the achaete genes. Using sequences of the former we show that the DNA binding results obtained in vitro fully correlate with the ability of different combinations to activate the expression of a reporter gene in yeast. Embryos deficient for the lethal of scute gene fail to activate hunchback in some neural lineages in a pattern consistent with the lack of a member of a multigene family.  相似文献   
37.
As for all proteins, G protein-coupled receptors (GPCRs) undergo synthesis and maturation within the endoplasmic reticulum (ER). The mechanisms involved in the biogenesis and trafficking of GPCRs from the ER to the cell surface are poorly understood, but they may involve interactions with other proteins. We have now identified the ER chaperone protein calnexin as an interacting protein for both D(1) and D(2) dopamine receptors. These protein-protein interactions were confirmed using Western blot analysis and co-immunoprecipitation experiments. To determine the influence of calnexin on receptor expression, we conducted assays in HEK293T cells using a variety of calnexin-modifying conditions. Inhibition of glycosylation either through receptor mutations or treatments with glycosylation inhibitors partially blocks the interactions with calnexin with a resulting decrease in cell surface receptor expression. Confocal fluorescence microscopy reveals the accumulation of D(1)-green fluorescent protein and D(2)-yellow fluorescent protein receptors within internal stores following treatment with calnexin inhibitors. Overexpression of calnexin also results in a marked decrease in both D(1) and D(2) receptor expression. This is likely because of an increase in ER retention because confocal microscopy revealed intracellular clustering of dopamine receptors that were co-localized with an ER marker protein. Additionally, we show that calnexin interacts with the receptors via two distinct mechanisms, glycan-dependent and glycan-independent, which may underlie the multiple effects (ER retention and surface trafficking) of calnexin on receptor expression. Our data suggest that optimal receptor-calnexin interactions critically regulate D(1) and D(2) receptor trafficking and expression at the cell surface, a mechanism likely to be of importance for many GPCRs.  相似文献   
38.
Cabrera León N 《BioTechniques》1999,27(6):1228-1231
This paper describes a Microsoft Word 97 macro designed for restriction endonuclease analysis. Selected DNA fragments in the active Word document can be analyzed through a dynamic dialog box that formats the enzyme restriction lists for further analysis. The results can be obtained in a new Word document with the name of the enzymes, number of cuts and positions. This macro has several advantages: the results can be printed in a format suitable for record keeping, no additional programs are required and it is simple to use.  相似文献   
39.
40.
Skeletal muscle can maintain ATP concentration constant during the transition from rest to exercise, whereas metabolic reaction rates may increase substantially. Among the key regulatory factors of skeletal muscle energy metabolism during exercise, the dynamics of cytosolic and mitochondrial NADH and NAD+ have not been characterized. To quantify these regulatory factors, we have developed a physiologically based computational model of skeletal muscle energy metabolism. This model integrates transport and reaction fluxes in distinct capillary, cytosolic, and mitochondrial domains and investigates the roles of mitochondrial NADH/NAD+ transport (shuttling) activity and muscle glycogen concentration (stores) during moderate intensity exercise (60% maximal O2 consumption). The underlying hypothesis is that the cytosolic redox state (NADH/NAD+) is much more sensitive to a metabolic disturbance in contracting skeletal muscle than the mitochondrial redox state. This hypothesis was tested by simulating the dynamic metabolic responses of skeletal muscle to exercise while altering the transport rate of reducing equivalents (NADH and NAD+) between cytosol and mitochondria and muscle glycogen stores. Simulations with optimal parameter estimates showed good agreement with the available experimental data from muscle biopsies in human subjects. Compared with these simulations, a 20% increase (or approximately 20% decrease) in mitochondrial NADH/NAD+ shuttling activity led to an approximately 70% decrease (or approximately 3-fold increase) in cytosolic redox state and an approximately 35% decrease (or approximately 25% increase) in muscle lactate level. Doubling (or halving) muscle glycogen concentration resulted in an approximately 50% increase (or approximately 35% decrease) in cytosolic redox state and an approximately 30% increase (or approximately 25% decrease) in muscle lactate concentration. In both cases, changes in mitochondrial redox state were minimal. In conclusion, the model simulations of exercise response are consistent with the hypothesis that mitochondrial NADH/NAD+ shuttling activity and muscle glycogen stores affect primarily the cytosolic redox state. Furthermore, muscle lactate production is regulated primarily by the cytosolic redox state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号