首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   21篇
  2019年   1篇
  2018年   2篇
  2017年   5篇
  2016年   5篇
  2015年   5篇
  2014年   4篇
  2013年   11篇
  2012年   10篇
  2011年   5篇
  2010年   4篇
  2009年   12篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   8篇
  2001年   8篇
  2000年   5篇
  1999年   7篇
  1998年   10篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1982年   2篇
  1981年   1篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1972年   1篇
  1968年   1篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
  1948年   1篇
  1921年   1篇
  1915年   1篇
  1907年   1篇
  1904年   2篇
排序方式: 共有177条查询结果,搜索用时 93 毫秒
131.
132.
The effect of the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA), on phospholipid degradation was investigated in three cell lines of dissimilar origin, Madin-Darby canine kidney cells (MDCK), rat aorta smooth muscle cells (RASM), and bovine pulmonary artery endothelial cells (BPAE). In cells prelabeled with [3H]myristic acid, which is predominantly incorporated into phosphatidylcholine (PC), TPA treatment (80 nM) in the absence or presence of ethanol (2%) in the culture medium resulted in either the rapid generation of [3H]phosphatidate (PA) or the sustained accumulation of [3H]phosphatidylethanol (PEt), respectively. Increases in [3H]PA and [3H]PEt were paralleled by quantitative decreases in cellular [3H]PC radioactivity. TPA-induced [3H]PEt formation occurred in a similar fashion, irrespective of the presence of Ca2+ in the culture medium. The experiments demonstrate that TPA elicits PC degradation by phospholipase D (PLD) in cells of diverse origin. Data from further experiments revealed a complex relationship between TPA-induced [3H]PA and [3H]diacylglycerol (DG) generation in the three cell lines that was suggestive of dual pathways for the generation of [3H]DG. Experiments to discern the pathways for TPA-induced, PC-derived DG were conducted by comparing the variation of [3H]PA and [3H]DG formation in the absence and in the presence of increasing ethanol concentrations in the culture medium. With increasing amounts of ethanol, the formation of [3H]PA decreased at the expense of [3H]PEt formation, and depending upon the pathway operable, the amount of [3H]DG formed was either decreased, indicative of indirect formation of DG via PA phosphohydrolase, or not modified, indicative of DG formation by a direct phospholipase C (PLC) pathway. Increasing the concentration of ethanol in the medium blocked TPA-induced [3H]DG generation in MDCK cells in a concentration-dependent manner, while the formation of [3H]PEt increased at the expense of [3H]PA formation. In BPAE cells the presence of ethanol likewise reduced TPA-elicited formation of DG. Conversely, in two smooth muscle cell lines, RASM and A-10, ethanol was without influence on TPA-induced formation of [3H]DG, although [3H]PEt was generated at the expense of [3H]PA. In RASM cells prelabeled with [3H]choline, TPA induced the release to the medium of [3H]choline and [3H]phosphocholine, indicative of both PLD and PLC activation. These results show that TPA elicits DG formation from PC in MDCK cells predominantly by an indirect pathway, whereas in arterial smooth muscle cells DG is formed in part by the direct action of PLC.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
133.
In the present study we used human breast cancer cell lines to assess the influence of ceramide and glucosylceramide (GC) on expression of MDR1, the multidrug resistance gene that codes for P-glycoprotein (P-gp), because GC has been shown to be a substrate for P-gp. Acute exposure (72 h) to C8-ceramide (5 microg/ml culture medium), a cell-permeable ceramide, increased MDR1 mRNA levels by 3- and 5-fold in T47D and in MDA-MB-435 cells, respectively. Acute exposure of MCF-7 and MDA-MB-231 cells to C8-GC (10 microg/ml culture medium), a cell-permeable analog of GC, increased MDR1 expression by 2- and 4- fold, respectively. Chronic exposure of MDA-MB-231 cells to C8-ceramide for extended periods enhanced MDR1 mRNA levels 45- and 390-fold at passages 12 and 22, respectively, and also elicited expression of P-gp. High-passage C8-ceramide-grown MDA-MB-231 (MDA-MB-231/C8cer) cells were more resistant to doxorubicin and paclitaxel. Incubation with [1-(14)C]C6-ceramide showed that cells converted short-chain ceramide into GC, lactosylceramide, and sphingomyelin. When challenged with 5 mug/ml [1-(14)C]C6-ceramide, MDA-MB-231, MDA-MB-435, MCF-7, and T47D cells took up 31, 17, 21, and 13%, respectively, and converted 82, 58, 62, and 58% of that to short-chain GC. Exposing cells to the GCS inhibitor, ethylenedioxy-P4, a substituted analog of 1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol, prevented ceramide's enhancement of MDR1 expression. These experiments show that high levels of ceramide and GC enhance expression of the multidrug resistance phenotype in cancer cells. Therefore, ceramide's role as a messenger of cytotoxic response might be linked to the multidrug resistance pathway.  相似文献   
134.
Prairie reconstructions are a critical component of preservation of the imperiled tallgrass prairie ecosystem in the Midwestern United States. Sustainability of this endeavor depends on establishment of persistent cover of planted native species and resistance to noxious weeds. The goal of this study was to understand the influence of early reconstruction practices on long‐term outcomes. Twelve replicates of three planting methods (dormant‐season broadcast, growing‐season broadcast, and growing‐season drill) and three seed mix richness levels (10, 20, or 34 species), fully crossed in a completely randomized design were planted in 2005 on nine former agricultural fields located in Iowa and Minnesota. Cover by species was estimated in 2005–2007, 2010, and 2015. In 2015, cover of planted species, native nonplanted species, and exotic species were similar to those recorded in 2010. Cover of the noxious weed Cirsium arvense had also declined by an average of 49% without herbicide from a peak in 2007 to low stable levels from 2010 to 2015. Richness of planted forbs, on the other hand, were still increasing in high‐richness broadcast treatments (e.g. 17–59% increase 2010–1015 in Minnesota). Two results in 2015 are reasons for concern: cover of planted species is only slightly over 50% in both Minnesota and Iowa, though with forbs still increasing, this may improve; and the cool‐season exotic grasses Poa pratensis and Bromus inermis are increasing at both Minnesota and Iowa sites. Control of these invasive grasses will be necessary, but care will be needed to avoid negative impacts of control methods on natives.  相似文献   
135.
Homozygous obese db/db (BKS-Lepr(db) and ob/ob (B6-Lep(ob)) mice were treated for 14 days with a continuous infusion of a fat emulsion (controls) or loaded with oleoyl-estrone at doses of 12.5 and 50 nmol/g x d using surgically inserted osmotic minipumps. Treatment with oleoyl-estrone resulted in a marked decrease in body weight in both strains, compared with the unchecked growth of controls. In db/db mice, plasma urea and insulin, as well as liver lipid decreased with treatment. In ob/ob mice, the effect on insulin was more marked, in parallel with higher plasma lipids pointing to increased fat mobilisation. The results suggest that oleoyl-estrone effects on body fat reserves and insulin resistance are not mediated by leptin, since ob/ob mice lack this hormone and in the db/db it is present but cannot induce effects because of defective leptin receptors; in both cases oleoyl-estrone treatment lowers body weight.  相似文献   
136.
Sphingolipids are comprised of a backbone sphingoid base that may be phosphorylated, acylated, glycosylated, bridged to various headgroups through phosphodiester linkages, or otherwise modified. Organisms usually contain large numbers of sphingolipid subspecies and knowledge about the types and amounts is imperative because they influence membrane structure, interactions with the extracellular matrix and neighboring cells, vesicular traffic and the formation of specialized structures such as phagosomes and autophagosomes, as well as participate in intracellular and extracellular signaling. Fortunately, “sphingolipidomic” analysis is becoming feasible (at least for important subsets such as all of the backbone “signaling” subspecies: ceramides, ceramide 1-phosphates, sphingoid bases, sphingoid base 1-phosphates, inter alia) using mass spectrometry, and these profiles are revealing many surprises, such as that under certain conditions cells contain significant amounts of “unusual” species: N-mono-, di-, and tri-methyl-sphingoid bases (including N,N-dimethylsphingosine); 3-ketodihydroceramides; N-acetyl-sphingoid bases (C2-ceramides); and dihydroceramides, in the latter case, in very high proportions when cells are treated with the anticancer drug fenretinide (4-hydroxyphenylretinamide). The elevation of DHceramides by fenretinide is befuddling because the 4,5-trans-double bond of ceramide has been thought to be required for biological activity; however, DHceramides induce autophagy and may be important in the regulation of this important cellular process. The complexity of the sphingolipidome is hard to imagine, but one hopes that, when partnered with other systems biology approaches, the causes and consequences of the complexity will explain how these intriguing compounds are involved in almost every aspect of cell behavior and the malfunctions of many diseases.  相似文献   
137.
Genetically modified domestic animals have many potential applications ranging from basic research to production agriculture. One of the goals in transgenic animal production schemes is to reliably predict the expression pattern of the foreign gene. Establishing a method to screen genetically modified embryos for transgene expression before transfer to surrogates may improve the likelihood of producing offspring with the desired expression pattern. In order to determine how transgene expression may be regulated in the early embryo, we generated porcine embryos from two distinct genetically modified cell lines by using the nuclear transfer (NT) technique. Both cell lines expressed the enhanced green fluorescent protein (eGFP); the first was a fibroblast cell line derived from the skin of a newborn pig that expressed eGFP, whereas the second was a fetal derived fibroblast cell line into which the eGFP gene was introduced by a retroviral vector. The reconstructed embryos were activated by electrical pulses and cultured in NCSU23. Although the in vitro developmental ability of each group of NT embryos was not different, the eGFP expression pattern was different. All embryos produced from the transduced fetal cell line fluoresced, but only 26% of the embryos generated from the newborn cell line fluoresced, and among those that did express eGFP, more than half had a mosaic expression pattern. This was unexpected because the fetal cell line was not clonally selected, and each cell had potentially different sites of integration. Embryos generated from the newborn cell line were surgically transferred to five surrogate gilts. One gilt delivered four female piglets, all of which expressed eGFP, and all had microsatellites identical to the donor. Here we demonstrate that transgene expression in all the blastomeres of an NT embryo is not uniform. In addition, transgene expression in a genetically manipulated embryo may not be an accurate indicator of expression in the resulting offspring.  相似文献   
138.
Chronic respiratory infection by Pseudomonas aeruginosa is a major cause of mortality in cystic fibrosis (CF). We investigated the interplay between three key microbiological aspects of these infections: the occurrence of transmissible and persistent strains, the emergence of variants with enhanced mutation rates (mutators) and the evolution of antibiotic resistance. For this purpose, 10 sequential isolates, covering up to an 8-year period, from each of 10 CF patients were studied. As anticipated, resistance significantly accumulated overtime, and occurred more frequently among mutator variants detected in 6 of the patients. Nevertheless, highest resistance was documented for the nonmutator CF epidemic strain LES-1 (ST-146) detected for the first time in Spain. A correlation between resistance profiles and resistance mechanisms evaluated [efflux pump (mexB, mexD, mexF, and mexY) and ampC overexpression and OprD production] was not always obvious and hypersusceptibility to certain antibiotics (such as aztreonam or meropenem) was frequently observed. The analysis of whole genome macrorestriction fragments through Pulsed-Field Gel Electrophoresis (PFGE) revealed that a single genotype (clone FQSE-A) produced persistent infections in 4 of the patients. Multilocus Sequence typing (MLST) identified clone FQSE-A as the CF epidemic clone ST-274, but striking discrepancies between PFGE and MLST profiles were evidenced. While PFGE macrorestriction patterns remained stable, a new sequence type (ST-1089) was detected in two of the patients, differing from ST-274 by only two point mutations in two of the genes, each leading to a nonpreviously described allele. Moreover, detailed genetic analyses revealed that the new ST-1089 is a mutS deficient mutator lineage that evolved from the epidemic strain ST-274, acquired specific resistance mechanisms, and underwent further interpatient spread. Thus, presented results provide the first evidence of interpatient dissemination of mutator lineages and denote their potential for unexpected short-term sequence type evolution, illustrating the complexity of P. aeruginosa population biology in CF.  相似文献   
139.
Drug resistance, an all too frequent characteristic of cancer, represents a serious barrier to successful treatment. Although many resistance mechanisms have been described, those that involve membrane-resident proteins belonging to the ABC (ATP binding cassette) transporter superfamily are of particular interest. In addition to cancer, the ABC transporter proteins are active in diseases such as malaria and leishmaniasis. A recent renaissance in lipid metabolism, specifically ceramide and sphingolipids, has fueled research and provided insight into the role of glycosphingolipids in multidrug resistance. This article reviews current knowledge on ceramide, glucosylceramide synthase and cerebrosides, and the relationship of these lipids to cellular response to anticancer agents.  相似文献   
140.
Glucosylceramide synthase (GCS or GlcT-1), converting ceramide to glucosylceramide, is a key enzyme for the synthesis of glycosphingolipids. Due to its diverse roles in physiology and diseases, GCS may be a disease marker and drug target. Current assays for enzymes including GCS are based on reactions conducted in a test tube using enzyme preparations. Measurement of enzyme activity in laboratory-made conditions cannot directly evaluate the role of GCS in cells. Here, we introduce a new approach to determine GCS cellular activity using fluorescent NBD C6-ceramide in vivo. Cellular GCS transfers UDP-glucose to NBD C6-ceramide and produces NBD C6-glucosylceramide. C6-glucosylceramide is then separated from C6-ceramide by thin-layer chromatography and both are then quantitated by spectrophotometer. This cell-based method is able to quantitate glucosylceramide in pmol range, produced by approximately 50,000 cells or 1.0 mg tissue. This method has been used successfully to evaluate the degrees of GCS enzyme in cells and in tumors subjected to gene manipulation and chemical inhibition. These data indicate that this cell-based fluorescent method is direct, reproducible, and simple for assessing ceramide glycosylation. It is applicable to validate GCS activity in drug-resistant cancers and in other disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号