首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   19篇
  2022年   2篇
  2021年   1篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   7篇
  2015年   17篇
  2014年   16篇
  2013年   26篇
  2012年   16篇
  2011年   17篇
  2010年   24篇
  2009年   24篇
  2008年   13篇
  2007年   12篇
  2006年   11篇
  2005年   13篇
  2004年   12篇
  2003年   3篇
  2002年   6篇
  2001年   7篇
  2000年   4篇
  1999年   3篇
  1998年   10篇
  1997年   11篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   7篇
  1991年   3篇
  1989年   2篇
  1988年   7篇
  1986年   1篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   16篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   5篇
  1976年   3篇
  1975年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有343条查询结果,搜索用时 15 毫秒
271.
272.
Atypical hemolytic uremic syndrome (aHUS) is a disease associated with dysregulation of the immune complement system, especially of the alternative pathway (AP). Complement factor H (CFH), consisting of 20 domains called complement control protein (CCP1-20), downregulates the AP as a cofactor for mediating C3 inactivation by complement factor I. However, anomalies related to CFH are known to cause excessive complement activation and cytotoxicity. In aHUS, mutations and the presence of anti-CFH autoantibodies (AAbs) have been reported as plausible causes of CFH dysfunction, and it is known that CFH-related aHUS carries a high probability of end-stage renal disease. Elucidating the detailed functions of CFH at the molecular level will help to understand aHUS pathogenesis. Herein, we used biophysical data to reveal that a heavy-chain antibody fragment, termed VHH4, recognized CFH with high affinity. Hemolytic assays also indicated that VHH4 disrupted the protective function of CFH on sheep erythrocytes. Furthermore, X-ray crystallography revealed that VHH4 recognized the Leu1181–Leu1189CCP20 loop, a known anti-CFH AAbs epitope. We next analyzed the dynamics of the C-terminal region of CFH and showed that the epitopes recognized by anti-CFH AAbs and VHH4 were the most flexible regions in CCP18-20. Finally, we conducted mutation analyses to elucidate the mechanism of VHH4 recognition of CFH and revealed that VHH4 inserts the Trp1183CCP20 residue of CFH into the pocket formed by the complementary determining region 3 loop. These results suggested that anti-CFH AAbs may adopt a similar molecular mechanism to recognize the flexible loop of Leu1181-Leu1189CCP20, leading to aHUS pathogenesis.  相似文献   
273.
274.
275.

Introduction  

The glucocorticoid receptor (GR) plays an important regulatory role in the immune system. Four polymorphisms in the GR gene are associated with differences in glucocorticoid (GC) sensitivity; the minor alleles of the polymorphisms N363 S and BclI are associated with relative hypersensitivity to GCs, while those of the polymorphisms ER22/23EK and 9β are associated with relative GC resistance. Because differences in GC sensitivity may influence immune effector functions, we examined whether these polymorphisms are associated with the susceptibility to develop Rheumatoid Arthritis (RA) and RA disease severity.  相似文献   
276.

Introduction  

Chondrocytes experience a hypertonic environment compared with plasma (280 mOsm) due to the high fixed negative charge density of cartilage. Standard isolation of chondrocytes removes their hypertonic matrix, exposing them to nonphysiological conditions. During in vitro expansion, chondrocytes quickly lose their specialized phenotype, making them inappropriate for cell-based regenerative strategies. We aimed to elucidate the effects of tonicity during isolation and in vitro expansion on chondrocyte phenotype.  相似文献   
277.

Background  

Tilt series are commonly used in electron tomography as a means of collecting three-dimensional information from two-dimensional projections. A common problem encountered is the projection alignment prior to 3D reconstruction. Current alignment techniques usually employ gold particles or image derived markers to correctly align the images. When these markers are not present, correlation between adjacent views is used to align them. However, sequential pairwise correlation is prone to bias and the resulting alignment is not always optimal.  相似文献   
278.

Background  

Proteins, especially larger ones, are often composed of individual evolutionary units, domains, which have their own function and structural fold. Predicting domains is an important intermediate step in protein analyses, including the prediction of protein structures.  相似文献   
279.

Background

Prediction of protein structures from their sequences is still one of the open grand challenges of computational biology. Some approaches to protein structure prediction, especially ab initio ones, rely to some extent on the prediction of residue contact maps. Residue contact map predictions have been assessed at the CASP competition for several years now. Although it has been shown that exact contact maps generally yield correct three-dimensional structures, this is true only at a relatively low resolution (3–4 Å from the native structure). Another known weakness of contact maps is that they are generally predicted ab initio, that is not exploiting information about potential homologues of known structure.

Results

We introduce a new class of distance restraints for protein structures: multi-class distance maps. We show that C α trace reconstructions based on 4-class native maps are significantly better than those from residue contact maps. We then build two predictors of 4-class maps based on recursive neural networks: one ab initio, or relying on the sequence and on evolutionary information; one template-based, or in which homology information to known structures is provided as a further input. We show that virtually any level of sequence similarity to structural templates (down to less than 10%) yields more accurate 4-class maps than the ab initio predictor. We show that template-based predictions by recursive neural networks are consistently better than the best template and than a number of combinations of the best available templates. We also extract binary residue contact maps at an 8 Å threshold (as per CASP assessment) from the 4-class predictors and show that the template-based version is also more accurate than the best template and consistently better than the ab initio one, down to very low levels of sequence identity to structural templates. Furthermore, we test both ab-initio and template-based 8 Å predictions on the CASP7 targets using a pre-CASP7 PDB, and find that both predictors are state-of-the-art, with the template-based one far outperforming the best CASP7 systems if templates with sequence identity to the query of 10% or better are available. Although this is not the main focus of this paper we also report on reconstructions of C α traces based on both ab initio and template-based 4-class map predictions, showing that the latter are generally more accurate even when homology is dubious.

Conclusion

Accurate predictions of multi-class maps may provide valuable constraints for improved ab initio and template-based prediction of protein structures, naturally incorporate multiple templates, and yield state-of-the-art binary maps. Predictions of protein structures and 8 Å contact maps based on the multi-class distance map predictors described in this paper are freely available to academic users at the url http://distill.ucd.ie/.  相似文献   
280.

Background  

Lymphocyte function-associated antigen-1 (LFA-1, CD11a/CD18, alphaLbeta2), the most abundant and widely expressed beta2-integrin, is required for many cellular adhesive interactions during the immune response. Many studies have shown that LFA-1 is centrally involved in the pathogenesis of several diseases caused by Repeats-in-toxin (RTX) -producing bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号