首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8182篇
  免费   894篇
  国内免费   40篇
  2022年   59篇
  2021年   140篇
  2020年   80篇
  2019年   89篇
  2018年   104篇
  2017年   103篇
  2016年   179篇
  2015年   357篇
  2014年   356篇
  2013年   435篇
  2012年   576篇
  2011年   582篇
  2010年   328篇
  2009年   274篇
  2008年   426篇
  2007年   377篇
  2006年   368篇
  2005年   355篇
  2004年   340篇
  2003年   281篇
  2002年   275篇
  2001年   222篇
  2000年   246篇
  1999年   216篇
  1998年   100篇
  1997年   80篇
  1996年   69篇
  1995年   68篇
  1994年   60篇
  1993年   75篇
  1992年   150篇
  1991年   126篇
  1990年   139篇
  1989年   127篇
  1988年   140篇
  1987年   108篇
  1986年   106篇
  1985年   115篇
  1984年   84篇
  1983年   46篇
  1982年   45篇
  1981年   49篇
  1980年   47篇
  1979年   78篇
  1978年   73篇
  1977年   61篇
  1976年   48篇
  1974年   47篇
  1973年   51篇
  1972年   39篇
排序方式: 共有9116条查询结果,搜索用时 15 毫秒
951.
Hemicellulose represents a rich source of biomass that can be converted into useful chemical feedstocks. One of the main components of hemicellulose is xylan, a polymer of xylose residues. Xylanase enzymes that hydrolyze xylan are therefore of great commercial interest. We have cloned a gene (xyn11A) that encodes a 283-amino acid xylanase enzyme from the fungus Lentinula edodes. The enzyme has a pI of 4.6 and belongs to the highly conserved glycosyl hydrolase family 11. The xylanase gene was cloned into a Pichia pastoris expression vector that secretes active enzyme into both solid and liquid media. The optimal reaction conditions were at pH 4.5 and 50°C. The enzyme had a Km of 1.5 mg/ml and a Vmax of 2.1 mmol/min/mg. Xyn11A produced primarily xylobiose, xylotriose, and xylotetraose from a birchwood xylan substrate. This is the first report on the cloning of a hemicellulase gene from L. edodes.  相似文献   
952.
953.
Solvent molecules play an important role for the structural and dynamical properties of proteins. A major focus of current protein engineering is the development of enzymes that are catalytically active in the presence of organic solvents. The monooxygenase P450 BM-3 is one of the best-studied enzymes and promising for industrial applications but with limited activity in the presence of organic solvents or cosolvents. To gain insights into the structural and dynamical properties of the heme domain of this enzyme in solution, molecular dynamics simulations in pure water and in a 14% DMSO/water mixture were performed. The results of the simulations show overall similar structural fluctuations in both solvent systems, with no indication of partial or global unfolding. In 14% DMSO, the regions comprising the helices E, F, and the EF loop (implicated in controlling the entry to the active site channel) undergo a large shift. Significant changes were also observed near the active site access channel at the residue R47. During the simulation, no DMSO molecule penetrated the active site. However, a significant accumulation of DMSO molecules close to the substrate-binding site and to the Flavin Mononucleotide (FMN) reductase domain interface was observed.  相似文献   
954.
During spermatogenesis, both adherens junctions (AJ) (such as ectoplasmic specialization (ES), a testis-specific AJ type at the Sertoli cell-spermatid interface (apical ES) or Sertoli-Sertoli cell interface (basal ES) in the apical compartment and BTB, respectively) and tight junctions (TJ) undergo extensive restructuring to permit germ cells to move across the blood-testis barrier (BTB) as well as the seminiferous epithelium from the basal compartment to the luminal edge to permit fully developed spermatids (spermatozoa) to be sloughed at spermiation. However, the integrity of the BTB cannot be compromised throughout spermatogenesis so that postmeiotic germ cell-specific antigens can be sequestered from the systemic circulation at all times. We thus hypothesize that AJ disruption in the seminiferous epithelium unlike other epithelia, can occur without compromising the BTB-barrier, even though these junctions, namely TJ and basal ES, co-exist side-by-side in the BTB. Using an intratesticular androgen suppression-induced germ cell loss model, we have shown that the disruption of AJs indeed was limited to the Sertoli-germ cell interface without perturbing the BTB. The testis apparently is using a unique physiological mechanism to induce the production of both TJ- and AJ-integral membrane proteins and their associated adaptors to maintain BTB integrity yet permitting a transient loss of cell adhesion function by dissociating N-cadherin from beta-catenin at the apical and basal ES. The enhanced production of TJ proteins, such as occludin and ZO-1, at the BTB site can supersede the transient loss of cadherin-catenin function at the basal ES. This thus allows germ cell depletion from the epithelium without compromising BTB integrity. It is plausible that the testis is using this novel mechanism to facilitate the movement of preleptotene and leptotene spermatocytes across the BTB at late stage VIII through early stage IX of the epithelial cycle in the rat while maintaining the BTB immunological barrier function.  相似文献   
955.
Huntington disease (HD) is a devastating neurologic disorder that is characterized by abnormal expansion of a CAG nt repeat in the first exon of the huntingtin (htt) gene, producing a mutant protein with an elongated polyglutamine stretch. The presence of this mutant protein is correlated with the characteristic loss of striatal neurons and the clinical manifestation of HD. Currently there is no effective treatment for the associated cell death. The aim of this study was to evaluate an innovative strategy combining RNA interference (RNAi) and gene transfer via the nonviral Sleeping Beauty (SB) transposon system to down-regulate Htt expression. siRNA expression vectors were designed to target exons 1, 4, 6, and 62 of the human htt gene. Real-time RT-PCR and Western blot analysis were used to quantify Htt mRNA and protein levels, respectively, in human cell lines. The results indicated that selected siRNA constructs significantly decreased Htt mRNA and protein levels relative to controls. In addition, SB transposition of the siRNA constructs into the genome reduced long-term protein expression of Htt by approximately 90%. The combination of siRNA, the SB transposon, and an accurate transgenic mouse model may permit evaluation of this approach in preventing the pathogenesis associated with expression of mutant Htt.  相似文献   
956.
We describe herein the design, synthesis, and in vitro biochemical evaluation of a series of potent, time-dependent inhibitors of the mast cell-derived serine protease tryptase. The inhibitors were readily obtained by attaching various heterocyclic thiols, as well as a basic primary specificity residue P1, to the 1,2,5-thiadiazolidin-3-one 1,1-dioxide scaffold. The inhibitors were found to be devoid of any inhibitory activity toward a neutral (elastase) or cysteine (papain) protease, however they were also fairly efficient inhibitors of bovine trypsin. The differential inhibition observed with trypsin suggests that enzyme selectivity can be optimized by exploiting differences in the S′ subsites of the two enzymes. The results described herein demonstrate the versatility of the heterocyclic scaffold in fashioning mechanism-based inhibitors of neutral, basic, and acidic (chymo)trypsin-like serine proteases.  相似文献   
957.
958.
959.
Cytochrome p450 BM-3 (EC 1.14.14.1) catalyzes the hydroxylation and/or epoxidation of a broad range of substrates, including alkanes, alkenes, alcohols, fatty acids, amides, polyaromatic hydrocarbons, and heterocycles. For many of these notoriously water-insoluble compounds, p450 BM-3's K(m) values are in the millimolar range. Polar organic cosolvents are therefore added to increase substrate solubility and achieve high catalytic efficiency. Using p450 BM-3 as a catalyst for these important transformations requires that we improve its ability to tolerate the cosolvents. By directed evolution, we improved the activity of p450 BM-3 in the presence of dimethylsulfoxide (DMSO) and tetrahydrofuran (THF), achieving increases in specific activity up to 10-fold in 2% (v/v) THF and 6-fold in 25% (v/v) DMSO. The engineered p450 BM-3's are also significantly more resistant to acetone, acetonitrile, dimethylformamide, and ethanol as cosolvents in the reaction.  相似文献   
960.
Fluid shear and other mechanical forces play an important role in the normal biophysical, biochemical, and gene regulatory responses of vertebrate tissue that are reflected in the expression of normal cell differentiation, growth, and function. Despite some promising work reported on the application of the quartz crystal microbalance (QCM) to both prokaryote and eukaryote cells over the last decade, QCM has yet to be successfully applied to cells in culture under conditions of flow-induced shear. In this study, high sensitivity QCM in conjunction with fluid modelling was used to monitor the onset of senescence in immortalised human embryonic kidney cells under laminar shear stresses of between 0.04 and 335 dyne/cm(2). The feasibility of this approach as a means of quantification and characterisation of cell physiological response and adhesion are explored and discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号