首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   461篇
  免费   41篇
  国内免费   31篇
  533篇
  2024年   1篇
  2023年   9篇
  2022年   19篇
  2021年   29篇
  2020年   19篇
  2019年   12篇
  2018年   18篇
  2017年   13篇
  2016年   21篇
  2015年   35篇
  2014年   30篇
  2013年   42篇
  2012年   42篇
  2011年   35篇
  2010年   17篇
  2009年   25篇
  2008年   21篇
  2007年   16篇
  2006年   10篇
  2005年   19篇
  2004年   19篇
  2003年   9篇
  2002年   20篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1997年   6篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   7篇
  1991年   3篇
  1990年   3篇
  1988年   1篇
  1983年   4篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有533条查询结果,搜索用时 0 毫秒
51.
Length–weight relationships (LWRs) were determined for three small fish species, Glaridoglanis andersonii (Day, 1870), Glyptosternum maculatum (Regan, 1905) and Pseudecheneis sulcatus (Mc‐Clelland, 1842) from the Yarlung Zangbo River basin, China. A total of 285 specimens were collected from the Yarlung Zangbo River in May and October 2017(frequency of sampling during the study period: once per month).The specimens were caught with fishing gear including drifting gillnets (nets: 10 × 1.0 m; mesh size: 3.0 cm) and shrimp cages (nets: 4.0 × 0.5 × 0.4 m; mesh size: 0.5 cm).  相似文献   
52.
Mou Z  Fan W  Dong X 《Cell》2003,113(7):935-944
NPR1 is an essential regulator of plant systemic acquired resistance (SAR), which confers immunity to a broad-spectrum of pathogens. SAR induction results in accumulation of the signal molecule salicylic acid (SA), which induces defense gene expression via activation of NPR1. We found that in an uninduced state, NPR1 is present as an oligomer formed through intermolecular disulfide bonds. Upon SAR induction, a biphasic change in cellular reduction potential occurs, resulting in reduction of NPR1 to a monomeric form. Monomeric NPR1 accumulates in the nucleus and activates gene expression. Inhibition of NPR1 reduction prevents defense gene expression, whereas mutation of Cys82 or Cys216 in NPR1 leads to constitutive monomerization, nuclear localization of the mutant proteins, and defense gene expression. These data provide a missing link between accumulation of SA and activation of NPR1 in the SAR signaling pathway.  相似文献   
53.
Hydroxychloroquine, used to treat malaria and some autoimmune disorders, potently inhibits viral infection of SARS coronavirus (SARS-CoV-1) and SARS-CoV-2 in cell-culture studies. However, human clinical trials of hydroxychloroquine failed to establish its usefulness as treatment for COVID-19. This compound is known to interfere with endosomal acidification necessary to the proteolytic activity of cathepsins. Following receptor binding and endocytosis, cathepsin L can cleave the SARS-CoV-1 and SARS-CoV-2 spike (S) proteins, thereby activating membrane fusion for cell entry. The plasma membrane-associated protease TMPRSS2 can similarly cleave these S proteins and activate viral entry at the cell surface. Here we show that the SARS-CoV-2 entry process is more dependent than that of SARS-CoV-1 on TMPRSS2 expression. This difference can be reversed when the furin-cleavage site of the SARS-CoV-2 S protein is ablated or when it is introduced into the SARS-CoV-1 S protein. We also show that hydroxychloroquine efficiently blocks viral entry mediated by cathepsin L, but not by TMPRSS2, and that a combination of hydroxychloroquine and a clinically-tested TMPRSS2 inhibitor prevents SARS-CoV-2 infection more potently than either drug alone. These studies identify functional differences between SARS-CoV-1 and -2 entry processes, and provide a mechanistic explanation for the limited in vivo utility of hydroxychloroquine as a treatment for COVID-19.  相似文献   
54.
Glucoamylases are responsible for hydrolysis of starch and polysaccharides to yield β‐d ‐glucose. Rhizopus oryzae glucoamylase (RoGA) is composed of an N‐terminal starch binding domain (SBD) and a C‐terminal catalytic domain connected by an O‐glycosylated linker. Two carbohydrate binding sites in RoSBD have been identified, site I is created by three highly conserved aromatic residues, Trp47, Tyr83, and Tyr94, and site II is built up by Tyr32 and Phe58. Here, the two crystal structures of RoSBD in complex with only α‐(1,6)‐linked isomaltotriose (RoSBD‐isoG3) and isomaltotetraose (RoSBD‐isoG4) have been determined at 1.2 and 1.3 Å, respectively. Interestingly, site II binding is observed in both complexes, while site I binding is only found in the RoSBD‐isoG4 complex. Hence, site II acts as the recognition binding site for carbohydrate and site I accommodates site II to bind isoG4. Site I participates in sugar binding only when the number of glucosyl units of oligosaccharides is more than three. Taken together, two carbohydrate binding sites in RoSBD cooperate to reinforce binding mode of glucoamylase with polysaccharides as well as the starch. Proteins 2014; 82:1079–1085. © 2013 Wiley Periodicals, Inc.  相似文献   
55.
Chaperonins GroEL and GroES: views from atomic force microscopy.   总被引:2,自引:1,他引:2       下载免费PDF全文
J Mou  S Sheng  R Ho    Z Shao 《Biophysical journal》1996,71(4):2213-2221
The Escherichia coli chaperonins, GroEL and GroES, as well as their complexes in the presence of a nonhydrolyzable nucleotide AMP-PNP, have been imaged with the atomic force microscope (AFM). We demonstrate that both GroEL and GroES that have been adsorbed to a mica surface can be resolved directly by the AFM in aqueous solution at room temperature. However, with glutaraldehyde fixation of already adsorbed molecules, the resolution of both GroEL and GroES was further improved, as all seven subunits were well resolved without any image processing. We also found that chemical fixation was necessary for the contact mode AFM to image GroEL/ES complexes, and in the AFM images. GroEL with GroES bound can be clearly distinguished from those without. The GroEL/ES complex was about 5 nm higher than GroEL alone, indicating a 2 nm upward movement of the apical domains of GroEL. Using a slightly larger probe force, unfixed GroEL could be dissected: the upper heptamer was removed to expose the contact surface of the two heptamers. These results clearly demonstrate the usefulness of cross-linking agents for the determination of molecular structures with the AFM. They also pave the way for using the AFM to study the structural basis for the function of GroE system and other molecular chaperones.  相似文献   
56.
FK506‐sensitive proline rotamases (FPRs), also known as FK506‐binding proteins (FKBPs), can mediate immunosuppressive drug resistance in budding yeast but their physiological roles in filamentous fungi remain opaque. Here, we report that three FPRs (cytosolic/nuclear 12.15‐kD Fpr1, membrane‐associated 14.78‐kD Fpr2 and nuclear 50.43‐kD Fpr3) are all equally essential for cellular Ca2+ homeostasis and contribute significantly to calcineurin activity at different levels in the insect‐pathogenic fungus Beauveria bassiana although the deletion of fpr1 alone conferred resistance to FK506. Radial growth, conidiation, conidial viability and virulence were less compromised in the absence of fpr1 or fpr2 than in the absence of fpr3, which abolished almost all growth on scant media and reduced growth moderately on rich media. The Δfpr3 mutant was more sensitive to Na+, K+, Mn2+, Ca2+, Cu2+, metal chelate, heat shock and UVB irradiation than was Δfpr2 while both mutants were equally sensitive to Zn2+, Mg2+, Fe2+, H2O2 and cell wall‐perturbing agents. In contrast, the Δfpr1 mutant was less sensitive to fewer stress cues. Most of 32 examined genes involved in DNA damage repair, Na+/K+ detoxification or osmotolerance and Ca2+ homeostasis were downregulated sharply in Δfpr2 and Δfpr3 but rarely so affected in Δfpr1, coinciding well with their phenotypic changes. These findings uncover important, but differential, roles of three FPRs in the fungal adaptation to insect host and environment and provide novel insight into their essential roles in calcium signalling pathway.  相似文献   
57.

Background

A recent genome-wide association study identified STK39as a candidate gene for blood pressure (BP) in Europeans. Subsequently, several studies have attempted to replicate the association across different ethnic populations. However, the results have been inconsistent.

Objective and Methods

We performed a meta-analysis to elucidate the association between the STK39 rs3754777 polymorphism (or proxy) and hypertension. Published literature from PubMed and Embase databases were retrieved and pooled odds ratio (OR) with 95% confidence interval (CI) was calculated using fixed- or random-effects model.

Results

Using appropriate inclusion/exclusion criteria, we identified 10 studies that included 21, 863 hypertensive cases and 24, 480 controls from different ethnicities. The meta-analysis showed a significant association of STK39 rs3754777 variant with hypertension (OR = 1.10, 95%CI = 1.06–1.15, p = 7.95×10−6). Further subgroup analysis by ethnicity suggested that the association was significant in Europeans (OR = 1.08, 95% CI = 1.03–1.14, p = 0.002) and in East Asians (OR = 1.16, 95%CI = 1.07–1.25, p = 4.34×10−4), but not in Africans (OR = 1.01, 95%CI 0.80–1.27, p = 0.932). We further confirmed the positive association by sensitivity analysis. No publication bias was detected (Begg’s test, p = 0.721; Egger’s test, p = 0.744).

Conclusions

The present meta-analysis confirms the significant association of STK39 polymorphism with susceptibility to hypertension in Europeans and East Asians. Future studies should include gene–gene and gene–environment interactions to investigate the identified association.  相似文献   
58.
Cardiac fibroblasts are known to be essential for adaptive responses in the pathogenesis of cardiovascular diseases, and increased intercellular communication of myocardial cells and cardiac fibroblasts acts as a crucial factor in maintaining the functional integrity of the heart. AMP-activated kinase (AMPK) is a key stress signaling kinase, which plays an important role in promoting cell survival and improving cell function. However, the underlying link between AMPK and gap junctional communication (GJIC) is still poorly understood. In this study, a connection between AMPK and GJIC in high glucose-mediated neonatal cardiac fibroblasts was assessed using fibroblast migration, measurement of dye transfer and connexin43 (Cx43) expression. 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and Compound C (CC) were used to regulate AMPK activity. The levels of cell migration and Cx43 protein expression in neonatal cardiac fibroblasts increased during high glucose treatment, accompanied by developed dye transfer. In addition, high glucose induced abundant phosphorylation of AMPK. Suppression of AMPK phosphorylation using CC reduced dye transfer, cell migration and Cx43 protein expression in neonatal cardiac fibroblasts, whereas the activation of AMPK using AICAR mimicked the high glucose-mediated cell migration, Cx43 protein expression and dye transfer enhancement. AMPK appears to participate in regulating GJIC in high-glucose-treated neonatal cardiac fibroblasts, including cell migration, dye transfer, Cx43 expression and distribution.  相似文献   
59.
Chloroplast genome sequences are very useful for species identification and phylogenetics. Chuanminshen (Chuanminshen violaceum Sheh et Shan) is an important traditional Chinese medicinal plant, for which the phylogenetic position is still controversial. In this study, the complete chloroplast genome of Chuanminshen violaceum Sheh et Shan was determined. The total size of Chuanminshen chloroplast genome was 154,529 bp with 37.8% GC content. It has the typical quadripartite structure, a large single copy (17,800 bp) and a small single copy (84,171 bp) and a pair of inverted repeats (26,279 bp). The whole genome harbors 132 genes, which includes 85 protein coding genes, 37 tRNA genes, eight rRNA genes, and two pseudogenes. Thirty-nine SSR loci, 32 tandem repeats and 49 dispersed repeats were found. Phylogenetic analyses results with the help of MEGA showed a new insight for the Chuanminshen phylogenetic relationship with the reported chloroplast genomes in Apiales plants.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号