全文获取类型
收费全文 | 9356篇 |
免费 | 725篇 |
国内免费 | 426篇 |
专业分类
10507篇 |
出版年
2024年 | 22篇 |
2023年 | 79篇 |
2022年 | 237篇 |
2021年 | 391篇 |
2020年 | 271篇 |
2019年 | 282篇 |
2018年 | 316篇 |
2017年 | 256篇 |
2016年 | 374篇 |
2015年 | 561篇 |
2014年 | 617篇 |
2013年 | 709篇 |
2012年 | 804篇 |
2011年 | 739篇 |
2010年 | 469篇 |
2009年 | 341篇 |
2008年 | 479篇 |
2007年 | 396篇 |
2006年 | 380篇 |
2005年 | 314篇 |
2004年 | 269篇 |
2003年 | 231篇 |
2002年 | 226篇 |
2001年 | 171篇 |
2000年 | 188篇 |
1999年 | 139篇 |
1998年 | 85篇 |
1997年 | 82篇 |
1996年 | 78篇 |
1995年 | 60篇 |
1994年 | 63篇 |
1993年 | 48篇 |
1992年 | 90篇 |
1991年 | 76篇 |
1990年 | 77篇 |
1989年 | 61篇 |
1988年 | 47篇 |
1987年 | 68篇 |
1986年 | 45篇 |
1985年 | 37篇 |
1984年 | 33篇 |
1983年 | 20篇 |
1982年 | 25篇 |
1980年 | 22篇 |
1979年 | 26篇 |
1978年 | 19篇 |
1977年 | 22篇 |
1975年 | 18篇 |
1973年 | 21篇 |
1972年 | 17篇 |
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
21.
Long-En Chen Kang Liu Wen-Ning Qi Elizabeth Joneschild Xiangling Tan Anthony V Seaber Jonathan S Stamler James R Urbaniak 《Journal of applied physiology》2002,92(2):559-566
This study investigated the dosage effects of nitric oxide synthase (NOS) inhibitor N(G)-monomethyl-L-arginine (L-NMMA) on intermittent pneumatic compression (IPC)-induced vasodilation in uncompressed upstream muscle and the effects of IPC on endothelial NOS (eNOS) expression in upstream muscle. After L-NMMA infusion, mean arterial pressure increased by 5% from baseline (99.5 +/- 18.7 mmHg; P < 0.05). Heart rate and respiratory rate were not significantly affected. One-hour IPC application on legs induced a 10% dilation from baseline in 10- to 20-microm arterioles and a 10-20% dilation in 21- to 40 microm arterioles and 41- to 70-microm arteries in uncompressed cremaster muscle. IPC-induced vasodilation was dose dependently reduced, abolished, or even reversed by concurrently infused L-NMMA. Moreover, expression of eNOS mRNA in uncompressed cremaster muscle was upregulated to 2 and 2.5 times normal at the end of 1- and 5-h IPC on legs, respectively, and the expression of eNOS protein was upregulated to 1.8 times normal. These increases returned to baseline level after cessation of IPC. The results suggest that eNOS plays an important role in regulating the microcirculation in upstream muscle during IPC. 相似文献
22.
Xiaofei Feng Kangxian Li Fangming Tan Mei Zhu Jieyi Zhou Yongjun Lai Lingfeng Zeng Yingting Ye Jing Huang Xiaosong Wu Shasha Li 《Biochemistry and Biophysics Reports》2018
ObjectiveThe objective of the present study was to investigate the hepatoprotective role of Radix Fici Hirtae on acute alcohol-induced liver injury in mice.MethodsThe component of Radix Fici Hirtae was extracted using petroleum ether, chloroform, ethyl acetate and n-butanol and divided into three dose groups of high, medium and low according to the clinical man's normal dose of the 50 g crude drug/d (0.83 g/kg body weight). Saline in concentration of 10 mg/mL, 5 mg/mL and 2.5 mg/mL and a dose of mouse lavage (0.2 mL/10 g mouse body weight) were added to the solution. Histopathlogical analysis of liver was performed. Finally, liver protection was validated by examining the effect of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AKP), and lactate dehydrogenase (LDH) on the hepatic function of mice in alcohol-induced liver injury model.ResultsExcept for group with saturated n-butyl alcohol, for the rest of the groups, pathological changes of hepatic lipid and inflammatory cells infiltration were alleviated and liver sinus was normal. As compared to model group, the concentrations of AST, ALT, AKP and LDH in chloroform groups and ethyl acetate groups were significantly decreased.ConclusionsExtracts of Radix Fici Hirtae are effective for the prevention of alcohol-induced hepatic damage in mice. The results revealed that extracts of Radix Fici Hirtae could be used as hepatoprotective agent. 相似文献
23.
Lin Xiao Can Chen Zhendong Li Sumin Zhu Johan Ck Tay Xi Zhang Shijun Zha Jieming Zeng Wee Kiat Tan Xin Liu Wee Joo Chng Shu Wang 《Cytotherapy》2018,20(3):420-435
Vγ9Vδ2 T cells are a minor subset of lymphocytes in the peripheral blood that has been extensively investigated for their tolerability, safety and anticancer efficacy. A hindrance to the broad application of these cells for adoptive cellular immunotherapy has been attaining clinically appropriate numbers of Vγ9Vδ2 T cells. Furthermore, Vγ9Vδ2 T cells exist at low frequencies among cancer patients. We, therefore, sought to conceive an economical method that allows for a quick and robust large-scale expansion of Vγ9Vδ2 T cells. A two-step protocol was developed, in which peripheral blood mononuclear cells (PBMCs) from healthy donors or cancer patients were activated with Zometa and interleukin (IL)-2, followed by co-culturing with gamma-irradiated, CD64-, CD86- and CD137L-expressing K562 artificial antigen-presenting cells (aAPCs) in the presence of the anti-CD3 antibody OKT3. We optimized the co-culture ratio of K562 aAPCs to immune cells, and migrated this method to a G-Rex cell growth platform to derive clinically relevant cell numbers in a Good Manufacturing Practice (GMP)-compliant manner. We further include a depletion step to selectively remove αβ T lymphocytes. The method exhibited high expansion folds and a specific enrichment of Vγ9Vδ2 T cells. Expanded Vγ9Vδ2 T cells displayed an effector memory phenotype with a concomitant down-regulated expression of inhibitory immune checkpoint receptors. Finally, we ascertained the cytotoxic activity of these expanded cells by using nonmodified and chimeric antigen receptor (CAR)–engrafted Vγ9Vδ2 T cells against a panel of solid tumor cells. Overall, we report an efficient approach to generate highly functional Vγ9Vδ2 T cells in massive numbers suitable for clinical application in an allogeneic setting. 相似文献
24.
The dysregulation of miR-137 plays vital roles in the oncogenesis and progression of various types of cancer, but its role in prognosis of gastric cancer patients remains unknown. This study was designed to investigate the expression and prognostic significance of miR-137 in gastric cancer patients after radical gastrectomy. Quantitative real-time PCR (qRT-PCR) was performed to evaluate the expression of miR-137 in human gastric cancer cell lines and tissues in patients with gastric adenocarcinoma. Results were assessed for association with clinical factors and overall survival by using Kaplan-Meier analysis. Prognostic values of miR-137 expression and clinical outcomes were evaluated by Cox regression analysis. The results exhibited that the expression level of miR-137 was decreased in human gastric cancer cell lines and tissues, and down-regulated expression of miR-137 was associated with tumor cell differentiation, N stage, and TNM stage. Decreased miR-137 expression in gastric cancer tissues was positively correlated with poor overall survival of gastric cancer patients. Further multivariate Cox regression analysis suggested that miR-137 expression was an independent prognostic indicator for gastric cancer except for TNM stage. Applying the prognostic value of miR-137 expression to TNM stage III group showed a better risk stratification for overall survival. In conclusion, the results reinforced the critical role for the down-regulated miR-137 expression in gastric cancer and suggested that miR-137 expression could be a prognostic indicator for this disease. In addition, these patients with TNM stage III gastric cancer and low miR-137 expression might need more aggressive postoperative treatment and closer follow-up. 相似文献
25.
Harnessing enzyme expression for production of target chemicals is a critical and multifarious process, where screening of different genes by inspection of enzymatic activity plays an imperative role. Here, we conceived an idea to improve the time-consuming and labor-intensive process of enzyme screening. Controlling cell growth was achieved by the Cluster Regularly Interspaced Short Palindromic Repeat (CRISPRi) system with different single guide RNA targeting the essential gene can (CRISPRi::CA) that encodes a carbonic anhydrase for CO2 uptake. CRISPRi::CA comprises a whole-cell biosensor to monitor CO2 concentration, ranging from 1% to 5%. On the basis of CRISPRi::CA, an effective and simple Direct Enzymatic Performance Evaluation & Determination (DEPEND) system was developed by a single step of plasmid transformation for targeted enzymes. As a result, the activity of different carbonic anhydrases corresponded to the colony-forming units. Furthermore, the enzymatic performance of 5-aminolevulinic acid synthetase (ALAS), which converts glycine and succinate-CoA to release a molecule of CO2, has also been distinguished, and the effect of the chaperone GroELS on ALAS enzyme folding was successfully identified in the DEPEND system. We provide a highly feasible, time-saving, and flexible technology for the screening and inspection of high-performance enzymes, which may accelerate protein engineering in the future. 相似文献
26.
Ramazan Ulus İbrahim Yeşildağ Muhammet Tanç Metin Bülbül Muharrem Kaya Claudiu T. Supuran 《Bioorganic & medicinal chemistry》2013,21(18):5799-5805
4-Amino-N-(4-sulfamoylphenyl)benzamide was synthesized by reduction of 4-nitro-N-(4-sulfamoylphenyl)benzamide and used to synthesize novel acridine sulfonamide compounds, by a coupling reaction with cyclic-1,3-diketones and aromatic aldehydes. The new compounds were investigated as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1), and more precisely the cytosolic isoforms hCA I, II and VII. hCA I was inhibited in the micromolar range by the new compounds (KIs of 0.16–9.64 μM) whereas hCA II and VII showed higher affinity for these compounds, with KIs in the range of 15–96 nM for hCA II, and of 4–498 nM for hCA VII. The structure–activity relationships for the inhibition of these isoforms with the acridine–sulfonamides reported here were also elucidated. 相似文献
27.
28.
Tien Chye Tan Oliver Spadiut Thanyaporn Wongnate Jeerus Sucharitakul Iris Krondorfer Christoph Sygmund Dietmar Haltrich Pimchai Chaiyen Clemens K. Peterbauer Christina Divne 《PloS one》2013,8(1)
Pyranose dehydrogenases (PDHs) are extracellular flavin-dependent oxidoreductases secreted by litter-decomposing fungi with a role in natural recycling of plant matter. All major monosaccharides in lignocellulose are oxidized by PDH at comparable yields and efficiencies. Oxidation takes place as single-oxidation or sequential double-oxidation reactions of the carbohydrates, resulting in sugar derivatives oxidized primarily at C2, C3 or C2/3 with the concomitant reduction of the flavin. A suitable electron acceptor then reoxidizes the reduced flavin. Whereas oxygen is a poor electron acceptor for PDH, several alternative acceptors, e.g., quinone compounds, naturally present during lignocellulose degradation, can be used. We have determined the 1.6-Å crystal structure of PDH from Agaricus meleagris. Interestingly, the flavin ring in PDH is modified by a covalent mono- or di-atomic species at the C(4a) position. Under normal conditions, PDH is not oxidized by oxygen; however, the related enzyme pyranose 2-oxidase (P2O) activates oxygen by a mechanism that proceeds via a covalent flavin C(4a)-hydroperoxide intermediate. Although the flavin C(4a) adduct is common in monooxygenases, it is unusual for flavoprotein oxidases, and it has been proposed that formation of the intermediate would be unfavorable in these oxidases. Thus, the flavin adduct in PDH not only shows that the adduct can be favorably accommodated in the active site, but also provides important details regarding the structural, spatial and physicochemical requirements for formation of this flavin intermediate in related oxidases. Extensive in silico modeling of carbohydrates in the PDH active site allowed us to rationalize the previously reported patterns of substrate specificity and regioselectivity. To evaluate the regioselectivity of D-glucose oxidation, reduction experiments were performed using fluorinated glucose. PDH was rapidly reduced by 3-fluorinated glucose, which has the C2 position accessible for oxidation, whereas 2-fluorinated glucose performed poorly (C3 accessible), indicating that the glucose C2 position is the primary site of attack. 相似文献
29.
Chlorophyll a and primary production were studied in northern South China Sea during summer from 2007 to 2008. Microplankton dominated total phytoplankton biomass in the coast, while picoplankton dominated in the offshore. Algae bloom caused by Thalassionema nitzschioides was found at the subsurface of upwelling regions (D2, C2) in 2008, and maximum of phytoplankton abundance reached 1.58 × 106 ind L?1. Integrated primary production ranged from 189.3 to 976.2 mg m?2 d?1 in 2007, and ranged from 652.1 to 6601 mg m?2 d?1 in 2008. PP showed positive relationship with IPP (p < 0.01) and negative relationship with SST (p < 0.05). Coastal upwelling and Pearl River discharge sustained high PP, and played important role in regulating the phytoplankton biomass and production. 相似文献
30.
Ooi CH Oh HK Wang HZ Tan AL Wu J Lee M Rha SY Chung HC Virshup DM Tan P 《PLoS genetics》2011,7(12):e1002415
MicroRNAs (miRNAs) are important components of cellular signaling pathways, acting either as pathway regulators or pathway targets. Currently, only a limited number of miRNAs have been functionally linked to specific signaling pathways. Here, we explored if gene expression signatures could be used to represent miRNA activities and integrated with genomic signatures of oncogenic pathway activity to identify connections between miRNAs and oncogenic pathways on a high-throughput, genome-wide scale. Mapping >300 gene expression signatures to >700 primary tumor profiles, we constructed a genome-wide miRNA-pathway network predicting the associations of 276 human miRNAs to 26 oncogenic pathways. The miRNA-pathway network confirmed a host of previously reported miRNA/pathway associations and uncovered several novel associations that were subsequently experimentally validated. Globally, the miRNA-pathway network demonstrates a small-world, but not scale-free, organization characterized by multiple distinct, tightly knit modules each exhibiting a high density of connections. However, unlike genetic or metabolic networks typified by only a few highly connected nodes ("hubs"), most nodes in the miRNA-pathway network are highly connected. Sequence-based computational analysis confirmed that highly-interconnected miRNAs are likely to be regulated by common pathways to target similar sets of downstream genes, suggesting a pervasive and high level of functional redundancy among coexpressed miRNAs. We conclude that gene expression signatures can be used as surrogates of miRNA activity. Our strategy facilitates the task of discovering novel miRNA-pathway connections, since gene expression data for multiple normal and disease conditions are abundantly available. 相似文献