首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   476篇
  免费   51篇
  2022年   6篇
  2021年   6篇
  2020年   5篇
  2019年   4篇
  2018年   7篇
  2017年   4篇
  2016年   5篇
  2015年   21篇
  2014年   21篇
  2013年   22篇
  2012年   38篇
  2011年   27篇
  2010年   19篇
  2009年   15篇
  2008年   26篇
  2007年   26篇
  2006年   14篇
  2005年   24篇
  2004年   20篇
  2003年   20篇
  2002年   17篇
  2001年   17篇
  2000年   13篇
  1999年   17篇
  1998年   4篇
  1997年   7篇
  1996年   5篇
  1995年   6篇
  1994年   5篇
  1993年   2篇
  1992年   8篇
  1991年   14篇
  1990年   12篇
  1989年   11篇
  1988年   5篇
  1987年   7篇
  1986年   3篇
  1985年   6篇
  1984年   7篇
  1983年   6篇
  1981年   3篇
  1979年   5篇
  1977年   4篇
  1976年   3篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有527条查询结果,搜索用时 828 毫秒
161.
In recent years, methicillin-resistant Staphylococcus aureus (MRSA) have become a truly global challenge. In addition to the long-known healthcare-associated clones, novel strains have also emerged outside of the hospital settings, in the community as well as in livestock. The emergence and spread of virulent clones expressing Panton-Valentine leukocidin (PVL) is an additional cause for concern. In order to provide an overview of pandemic, epidemic and sporadic strains, more than 3,000 clinical and veterinary isolates of MRSA mainly from Germany, the United Kingdom, Ireland, France, Malta, Abu Dhabi, Hong Kong, Australia, Trinidad & Tobago as well as some reference strains from the United States have been genotyped by DNA microarray analysis. This technique allowed the assignment of the MRSA isolates to 34 distinct lineages which can be clearly defined based on non-mobile genes. The results were in accordance with data from multilocus sequence typing. More than 100 different strains were distinguished based on affiliation to these lineages, SCCmec type and the presence or absence of PVL. These strains are described here mainly with regard to clinically relevant antimicrobial resistance- and virulence-associated markers, but also in relation to epidemiology and geographic distribution. The findings of the study show a high level of biodiversity among MRSA, especially among strains harbouring SCCmec IV and V elements. The data also indicate a high rate of genetic recombination in MRSA involving SCC elements, bacteriophages or other mobile genetic elements and large-scale chromosomal replacements.  相似文献   
162.
163.
Minimal residual disease, or MRD, is an important prognostic indicator in childhood acute lymphoblastic leukemia. In ALL-IC-BFM 2002 study, we employed a standardized method of flow cytometry MRD monitoring for multiple centers internationally using uniformed gating, and determined the relevant MRD-based risk stratification strategies in our local patient cohort. We also evaluated a novel method of PCR MRD quantitation using peripheral blood plasma. For the bone marrow flow MRD study, patients could be stratified into 3 risk groups according to MRD level using a single time-point at day-15 (Model I) (I-A: <0.1%, I-B: 0.1–10%, I-C: >10%), or using two time-points at day-15 and day-33 (Model II) (II-A: day-15<10% and day-33<0.01%, II-B: day-15≥10% or day-33≥0.01% but not both, II-C: day-15≥10% and day-33≥0.01%), which showed significantly superior prediction of relapse (p = .00047 and <0.0001 respectively). Importantly, patients with good outcome (frequency: 56.0%, event-free survival: 90.1%) could be more accurately predicted by Model II. In peripheral blood plasma PCR MRD investigation, patients with day-15-MRD≥10−4 were at a significantly higher risk of relapse (p = 0.0117). By multivariate analysis, MRD results from both methods could independently predict patients’ prognosis, with 20–35-fold increase in risk of relapse for flow MRD I-C and II-C respectively, and 5.8-fold for patients having plasma MRD of ≥10−4. We confirmed that MRD detection by flow cytometry is useful for prognostic evaluation in our Chinese cohort of childhood ALL after treatment. Moreover, peripheral blood plasma DNA MRD can be an alternative where bone marrow specimen is unavailable and as a less invasive method, which allows close monitoring.  相似文献   
164.
Dendritic spines are specialized structures on neuronal processes where the majority of excitatory synapses are localized. Spines are highly dynamic, and their stabilization and morphology are influenced by synaptic activity. This extrinsic regulation of spine morphogenesis underlies experience-dependent brain development and information storage within the brain circuitry. In this review, we summarize recent findings that demonstrate the phenomenon of activity-dependent structural plasticity and the molecular mechanisms by which synaptic activity sculpt neuronal connections. Impaired structural plasticity is associated with perturbed brain function in neurodevelopmental disorders such as autism. Information from the mechanistic studies therefore provides important insights into the design of therapeutic strategies for these brain disorders.  相似文献   
165.
In this study, the herbal extracts of Schisandra chinensis were demonstrated to inhibit the contractions induced by acetylcholine (ACh) and serotonin (5-HT) in guinea pig ileum, and the 95% ethanol extract was more effective than the aqueous extract. Analysis with High Performance Liquid Chromatography (HPLC) indicated that schisandrin, schisandrol B, schisandrin A and schisandrin B were the major lignans of Schisandra chinensis, and the ethanol extract contained higher amount of these lignans than the aqueous extract. All four lignans inhibited the contractile responses to ACh, with EC20 values ranging from 2.2 ± 0.4 μM (schisandrin A) to 13.2 ± 4.7 μM (schisandrin). The effectiveness of these compounds in relaxing the 5-HT-induced contraction was observed with a similar magnitude. Receptor binding assay indicated that Schisandra lignans did not show significant antagonistic effect on muscarinic M3 receptor. In Ca2+-free preparations primed with ACh or KCl, schisandrin A (50 μM) attenuated the contractile responses to cumulative addition of CaCl2 by 37%. In addition, schisandrin A also concentration-dependently inhibited ACh-induced contractions in Ca2+-free buffer. This study demonstrates that Schisandra chinensis exhibited relaxant effects on agonist-induced contraction in guinea pig ileum, with schisandrin, schisandrol B, schisandrin A and schisandrin B being the major active ingredients. The antispasmodic action of schisandrin A involved inhibitions on both Ca2+ influx through L-type Ca2+ channels and intracellular Ca2+ mobilization, rather than specific antagonism of cholinergic muscarinic receptors.  相似文献   
166.
Nuclear translocation of Smad proteins is a critical step in signal transduction of transforming growth factor beta (TGF-beta) and bone morphogenetic proteins (BMPs). Using nuclear accumulation of the Drosophila Smad Mothers against Decapentaplegic (Mad) as the readout, we carried out a whole-genome RNAi screening in Drosophila cells. The screen identified moleskin (msk) as important for the nuclear import of phosphorylated Mad. Genetic evidence in the developing eye imaginal discs also demonstrates the critical functions of msk in regulating phospho-Mad. Moreover, knockdown of importin 7 and 8 (Imp7 and 8), the mammalian orthologues of Msk, markedly impaired nuclear accumulation of Smad1 in response to BMP2 and of Smad2/3 in response to TGF-beta. Biochemical studies further suggest that Smads are novel nuclear import substrates of Imp7 and 8. We have thus identified new evolutionarily conserved proteins that are important in the signal transduction of TGF-beta and BMP into the nucleus.  相似文献   
167.
While cyclin-dependent kinase 5 (Cdk5) is of growing importance to neuronal signaling, its regulation remains relatively unexplored. Examination of the mechanism by which NMDA modulates the phosphorylation of protein phosphatase inhibitor-1 at Ser6 and Ser67 and dopamine- and cAMP-regulated phosphoprotein M r 32 000 at Thr75 revealed that generalized depolarization, rather than specific activation of NMDA receptors, was sufficient to induce decreases in these Cdk5 sites. Although no evidence for the involvement of the Cdk5 cofactors p35 or p39, or for L- and T-type voltage-gated Ca2+ channels, was found, evaluation of the role of phosphatases and extracellular cations revealed differential regulation of the three sites. NMDA-induced decreases in the phosphorylation of Thr75 of dopamine- and cAMP-regulated phosphoprotein M r 32 000 required protein phosphatase 1/2A activity and extracellular Ca2+. In contrast, the effects on Ser6 and Ser67 of inhibitor-1 were not cation specific; either Na+ or Ca2+ sufficed. Furthermore, while the decrease in phosphorylation of Ser6 was partially dependent on protein phosphatase 2B, that of Ser67 was independent of the major protein serine/threonine phosphatases, likely indicating the presence of a pathway by which NMDA inhibits Cdk5 activity. Thus, in the striatum the regulation of phosphorylation of Cdk5-dependent sites by NMDA occurs through multiple distinct pathways.  相似文献   
168.
The objective of this study was to determine the effects of feeding on the excretory nitrogen (N) metabolism of the aquatic Chinese soft-shelled turtle, Pelodiscus sinensis, with a special emphasis on the role of urea synthesis in ammonia detoxification. P. sinensis is ureogenic and possesses a full complement of ornithine-urea cycle enzymes in its liver. It is primarily ureotelic in water, and the estimated rate of urea synthesis in unfed animals was equivalent to only 1.5% of the maximal capacity of carbamoyl phosphate synthetase I (CPS I) in its liver. Approximately 72 h was required for P. sinensis to completely digest a meal of prawn meat. During this period, there were significant increases in ammonia contents in the stomach at hour 24 and in the intestine between hours 12 and 36, which could be a result of bacterial activities in the intestinal tract. However, ammonia contents in the liver, muscle, brain and plasma remained unchanged throughout the 72-h post-feeding. In contrast, at hour 24, urea contents in the stomach, intestine, liver, muscle, brain and plasma increased significantly by 2.9−, 3.5−, 2.6−, 2.9−, 3.4 and 3.0-fold, respectively. In addition, there was a 3.3- to 8.0−fold increase in the urea excretion rate between hours 0 and 36 post-feeding, which preceded the increase in ammonia excretion between hours 12 and 48. By hour 48, 68% of the assimilated N from the feed was excreted, 54% of which was excreted as urea-N. The rate of urea synthesis apparently increased sevenfold during the initial 24 h after feeding, which demanded only 10% of the maximal CPS I capacity in P. sinensis. The postprandial detoxification of ammonia to urea in P. sinensis effectively prevented postprandial surges in ammonia contents in the plasma and other tissues, as observed in other animals, during the 72-h period post-feeding. In addition, postprandial ammonia toxicity was ameliorated by increased transamination and synthesis of certain amino acids in the liver and muscle of P. sinensis. After feeding, a slight but significant increase in the glutamine content occurred in the brain at hour 24, indicating that the brain might experience a transient increase in ammonia and ammonia was detoxified to glutamine.  相似文献   
169.
Radiation pneumonitis is an unpredictable complication of radiotherapy for lung cancer and a condition which can cause significant morbidity. The ability to identify patients at a high risk of developing pneumonitis is critical, since it will enable the individualization of the treatment plan. Because the cytotoxic effect of radiation is propagated through reactive oxygen species (ROS) and ROS-driven oxidative stress, the role of antioxidant defense systems in radiation pneumonitis was investigated. Using the pneumonitis-sensitive C3H/HeN mice as a model, we demonstrated that the antioxidant response of the lung correlated well with that of red blood cells (RBC). We then proceeded to test whether differences of RBC antioxidant response would predict the pneumonitis development in patients. Superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activities and glutathione in RBC were measured at baseline and then weekly for 6 weeks of treatment in 15 eligible patients receiving concurrent chemo-radiotherapy for unresectable stage III NSCLC. Striking differences were found in the antioxidant activities of RBC with respect to the pneumonitis development. Those who developed pneumonitis showed higher SOD and lower GPX activities at baseline compared to those who did not (3.7 vs 6.8 units/mg for median SOD, 16.5 vs 10.7 nmol/min/mg for median GPX). The functional imbalance of SOD and GPX was displayed consistently throughout the treatment period. The sensitivity and specificity of pneumonitis prediction were further increased when the GPX/SOD ratio was analyzed (pretreatment P = 0.0046). Our results provide a strong rationale to monitor SOD and GPX activities of RBC to identify patients who are at risk of developing pneumonitis, and to implement a strategy of increasing the GPX/SOD ratio in order to lower the risk.  相似文献   
170.
BACKGROUND AND AIMS: Smooth muscle myosin monomers self-assemble in solution to form filaments. Phosphorylation of the 20-kD regulatory myosin light chain (MLC20) enhances filament formation. It is not known whether the phosphorylated and non-phosphorylated filaments possess the same structural integrity. METHODS: We purified myosin from bovine trachealis to form filaments, in ATP-containing zero-calcium solution during a slow dialysis that gradually reduced the ionic strength. Sufficient myosin light chain kinase and phosphatase, as well as calmodulin, were retained after the myosin purification and this enabled phosphorylation of MLC20 within 20-40s after addition of calcium to the filament suspension. The phosphorylated and non-phosphorylated filaments were then partially disassembled by ultrasonification. The extent of filament disintegration was visualized and quantified by atomic force microscopy. RESULTS: MLC20 phosphorylation reduced the diameter of the filaments and rendered the filaments more resistant to ultrasonic agitation. Electron microscopy revealed a similar reduction in filament diameter in intact smooth muscle when the cells were activated. CONCLUSION: Modification of the structural and physical properties of myosin filaments by MLC20 phosphorylation may be a key regulation step in smooth muscle where formation and dissolution of the filaments are required in the cells' adaptation to different cell length.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号