The individual and interactive effects of temperature, pH, NaCl, and aw on the proteolytic and lipolytic activities of Lactobacillus delbrueckii subsp. bulgaricus B397, Lactococcus lactis subsp. lactis T12, and Lb. plantarum 2739 were studied by quadratic response surface methodology. The effects on enzyme activities depended on the interactions among the independent variables, type of activity, substrate and, especially, species. The proteinase activity of strains B397 and T12 was affected differently by pH as individual or interactive terms depending on the type of substrate sl- or β-casein. The increase of NaCl concentration (2.5–7.5%) under cheese-like conditions had a negative effect on the proteinase activity of strain T12. The effect of NaCl was related to the corresponding decrease in aw. Aminopeptidases N and A, iminopeptidase and endopeptidase of Lc. lactis subsp. lactis T12 were strongly inhibited by pH 5–6 and NaCl concentration higher than 3.75%. The negative effects of these independent variables was in several cases enhanced by their interaction and/or by the interaction with the lowest temperatures. In contrast, the same peptidases of Lb. plantarum 2739 retained a high activity under the very hostile environmental conditions. Iminopeptidase and especially endopeptidase activities of strain 2739 were stimulated slightly by NaCl at concentrations up to 5%. Lipase/esterase activity of Lb. delbrueckii subsp. bulgaricus B397 was markedly inhibited under cheese-like conditions. 相似文献
Five human clones containing genomic regions of polydA have been isolated by their ability to form intermolecular triple helices with agarose cross-linked polyU. All of these clones contain Alu repetitive DNA sequences. End-labelled DNA fragments containing these sequences have been successfully reconstituted onto nucleosome core particles by salt exchange. The structure of these has been examined by digesting with DNase I, hydroxyl radicals or diethylpyrocarbonate. DNase I cleavage of the polydA tracts is poor in the free DNA but is markedly enhanced at certain positions when complexed with nucleosome cores. Phased digestion patterns are observed which continue through the (A)n blocks and reveal an average helical periodicity of about 10 base pairs. The distance between adjacent maxima varies between 8-12 base pairs, suggesting that the exact helical repeat is not necessarily constant. One fragment containing the sequence (TA)11T34 reveals a 12 base pair repeat within the (AT)n region. A pUC19 polylinker fragment containing a block of A69.T69 cloned into the Smal site could also be reconstituted onto nucleosome cores and reveals the same phased DNaseI digestion pattern. The DNase I cleavage pattern is not identical at each of the maxima, suggesting that the structural distortions imposed by the core particles are not constant along the DNA. 相似文献
Recent studies have demonstrated that the 50KD T11 molecule is a surface component of a macrophage-independent alternative pathway of human T cell activation that is unrelated to the T3/Ti antigen-MHC receptor complex. Given the expression of T11 on all human thymocytes, it was of interest to determine whether they could be activated via this pathway. The triggering of T11 by monoclonal antibodies anti-T112 and anti-T113, directed at two unique epitopes on the molecule, induced IL 2 receptor expression on both T3+ and T3- thymocytes but did not induce IL 2 production. Consequently, in contrast to peripheral blood T cells, thymocytes did not proliferate in response to anti-T112 and anti-T113 in the absence of exogenous IL 2. These studies suggest that IL 2 receptor gene activation precedes IL 2 gene activation in T cell development. The ability of the alternative pathway of T cell activation to induce IL 2 receptor expression on T3- thymocytes implies that the T11 molecule may have an important role in early thymocyte ontogeny. 相似文献
Successful neovascularization requires that sprouting endothelial cells (ECs) integrate to form new vascular networks. However, architecturally defective, poorly integrated vessels with blind ends are typical of pathological angiogenesis induced by vascular endothelial growth factor-A (VEGF), thereby limiting the utility of VEGF for therapeutic angiogenesis and aggravating ischemia-related pathologies. Here we investigated the possibility that over-exuberant calpain activity is responsible for aberrant VEGF neovessel architecture and integration. Calpains are a family of intracellular calcium-dependent, non-lysosomal cysteine proteases that regulate cellular functions through proteolysis of numerous substrates.
Methodology/Principal Findings
In a mouse skin model of VEGF-driven angiogenesis, retroviral transduction with dominant-negative (DN) calpain-I promoted neovessel integration and lumen formation, reduced blind ends, and improved vascular perfusion. Moderate doses of calpain inhibitor-I improved VEGF-driven angiogenesis similarly to DN calpain-I. Conversely, retroviral transduction with wild-type (WT) calpain-I abolished neovessel integration and lumen formation. In vitro, moderate suppression of calpain activity with DN calpain-I or calpain inhibitor-I increased the microtubule-stabilizing protein tau in endothelial cells (ECs), increased the average length of microtubules, increased actin cable length, and increased the interconnectivity of vascular cords. Conversely, WT calpain-I diminished tau, collapsed microtubules, disrupted actin cables, and inhibited integration of cord networks. Consistent with the critical importance of microtubules for vascular network integration, the microtubule-stabilizing agent taxol supported vascular cord integration whereas microtubule dissolution with nocodazole collapsed cord networks.
Conclusions/Significance
These findings implicate VEGF-induction of calpain activity and impairment of cytoskeletal dynamics in the failure of VEGF-induced neovessels to form and integrate properly. Accordingly, calpain represents an important target for rectifying key vascular defects associated with pathological angiogenesis and for improving therapeutic angiogenesis with VEGF. 相似文献
Competition in a natural system may be interspecific or intraspecific. In semiarid ecosystems, competition for resources between established neighboring grass species and newly recruited seedlings is very high. To examine the effects of grass species density, growing space and time of establishment on Eucalyptus victrix seedlings (interspecific competition), and the effect of density and growing space within E.victrix (intraspecific competition) we conducted an experiment under controlled conditions. We tested four hypotheses (i) E.victrix seedling growth is not affected by grass density; (ii) there is no difference in E.victrix survival and growth between early and later grass establishment; (iii) interspecific competition is not more intense than intraspecific competition in E.victrix; and (iv) growth of E.victrix seedlings is not dependent on available growing space. In a monoculture of E.victrix, seedling mortality was higher (10%) in large pots. In mixed culture pots, where E.victrix seedlings and grass seedlings were planted on the same day, E.victrix seedlings survived for up to 4weeks, but started to die after week five in the smallest pots. However, mortalities occurred in pots of all sizes when grass was established before E.victrix seedlings. Results also indicated that the resources necessary for the growth of individual E.victrix seedlings were more limiting under conditions of increased density of neighboring grass species rather than intraspecific competition. In particular, photosynthetic area of E.victrix seedlings was drastically reduced in mixed cultures. Although density, pot size and time of planting had impacts on E.victrix seedlings, the patterns of these impacts were variable. 相似文献
The majority of our understanding of the effects of climate change on coral reef fishes are currently based on studies of small-bodied species such as damselfishes. By contrast, we know little about the potential impacts of ocean warming on larger species of herbivorous and detritivorous reef fish, despite them being a critical functional group and an essential source of food protein for millions of people. In addition, we know little of the role of habitat in determining species’ thermal sensitivity and the legitimacy of extrapolating thermal performance across closely-related species from different habitat types. Here we test the effect of exposure to increased water temperature during juvenile development on key physiological and behavioral traits of two species of rabbitfish typically associated with different habitats: Siganus doliatus (reef-associated) and S. lineatus (estuarine). Wild-caught juveniles were reared for 14 weeks at temperatures representing present-day ambient conditions (28.0 °C), late-summer ambient conditions (30.0 °C), or those projected on reefs under future global warming scenarios (31.5 °C). We then measured the somatic (growth, condition, immune response) and behavioral (feeding rate, latency to feed and activity level) traits of individuals within each treatment to determine the sensitivity of each species to elevated water temperatures. Overall, both species showed comparatively robust levels of thermal tolerance, based on previously-documented responses of small-bodied reef fishes. However, two very different patterns emerged. The reef-associated S. doliatus showed a greater physiological response to temperature, with negative effects on hepatosomatic condition and immune function observed in individuals exposed to the 31.5 °C treatment. By contrast, there were no negative physiological effects of temperature observed in S. lineatus and instead we recorded behavioral changes, with individuals at 30 °C and 31.5 °C displaying altered feeding behavior (increased feeding rate and decreased latency to feed). These distinct responses observed between congeners are likely due to their evolutionary history and flag the potential inaccuracies that could arise from extrapolating effects of ocean warming across even closely-related species adapted to different habitats.
Recent studies have found that extracellular vesicles (EVs) play an important role in normal and disease processes. In the present study, we isolated and characterized EVs from the brains of rhesus macaques, both with and without simian immunodeficiency virus (SIV) induced central nervous system (CNS) disease. Small RNA sequencing revealed increased miR-21 levels in EVs from SIV encephalitic (SIVE) brains. In situ hybridization revealed increased miR-21 expression in neurons and macrophage/microglial cells/nodules during SIV induced CNS disease. In vitro culture of macrophages revealed that miR-21 is released into EVs and is neurotoxic when compared to EVs derived from miR-21-/- knockout animals. A mutation of the sequence within miR-21, predicted to bind TLR7, eliminates this neurotoxicity. Indeed miR-21 in EV activates TLR7 in a reporter cell line, and the neurotoxicity is dependent upon TLR7, as neurons isolated from TLR7-/- knockout mice are protected from neurotoxicity. Further, we show that EVs isolated from the brains of monkeys with SIV induced CNS disease activates TLR7 and were neurotoxic when compared to EVs from control animals. Finally, we show that EV-miR-21 induced neurotoxicity was unaffected by apoptosis inhibition but could be prevented by a necroptosis inhibitor, necrostatin-1, highlighting the actions of this pathway in a growing number of CNS disorders. 相似文献