首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104019篇
  免费   146229篇
  国内免费   39851篇
  290099篇
  2020年   2446篇
  2019年   4270篇
  2018年   3440篇
  2017年   3164篇
  2016年   3410篇
  2015年   4309篇
  2014年   5085篇
  2013年   4931篇
  2012年   6299篇
  2011年   6486篇
  2010年   7350篇
  2009年   12395篇
  2008年   6872篇
  2007年   6424篇
  2006年   5517篇
  2005年   5079篇
  2004年   4618篇
  2003年   3995篇
  2002年   4492篇
  2001年   5443篇
  2000年   3079篇
  1999年   7463篇
  1998年   9264篇
  1997年   9328篇
  1996年   8667篇
  1995年   8908篇
  1994年   8294篇
  1993年   7924篇
  1992年   7886篇
  1991年   7908篇
  1990年   8703篇
  1989年   7963篇
  1988年   7224篇
  1987年   6324篇
  1986年   5849篇
  1985年   5255篇
  1984年   4071篇
  1983年   3282篇
  1982年   3616篇
  1981年   3243篇
  1980年   3166篇
  1979年   3269篇
  1978年   2976篇
  1977年   2910篇
  1976年   2728篇
  1974年   2473篇
  1973年   2475篇
  1972年   2822篇
  1971年   2604篇
  1969年   2398篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
931.
932.
Genetic instability and DNA amplification in Streptomyces lividans 66.   总被引:18,自引:11,他引:7       下载免费PDF全文
Streptomyces lividans 66 exhibits genetic instability, involving sequential loss of resistance to chloramphenicol (Cams) and subsequent mutation of argG. Associated with this instability is the amplification of a 5.7-kilobase (kb) amplified DNA sequence (ADS). We have characterized a second, independent pathway of genetic instability, involving sequential loss of resistance to tetracycline (Tets) followed by mutation in nitrogen assimilation (Ntr). We detected DNA amplification in many of these mutant strains, as well as other reiterations coresident with the 5.7-kb ADS in Cams Arg mutants. However, in contrast to the 5.7-kb ADS, none of the novel elements were observed to amplify at high frequency. The mutation of argG is due to a deletion, one endpoint of which is defined by the 5.7-kb ADS. This amplification derives from a structure, the tandemly duplicated amplifiable unit of DNA (AUD), present in the wild-type genome. We found that progenitor strains containing just a single-copy AUD failed to reproducibly generate amplification of this element in Cams argG mutants, and DNA deletion endpoints proximal to the element were found to be unspecific. These results suggest that a duplicated AUD structure is required for high-frequency amplification and that this reiteration can subsequently buffer the extent of deletion formation in the relevant chromosomal region.  相似文献   
933.
In Escherichia coli, the FtsQ, FtsA, and FtsZ proteins are believed to play essential roles in the regulation of cell division. Of the three proteins, FtsZ has received the most attention, particularly because of its interactions with SfiA. Double mutants which carry mutations located in the ftsQ, ftsA, or ftsZ gene in combination with the lon-1 mutation were constructed. In the presence of the lon-1 mutation, which is known to stabilize SfiA, the ftsQ1 mutant cells were not capable of forming colonies on a rich agar medium, whereas mutant cells harboring either one of the mutations grew well on this medium. Examination of lon-1 fts double-mutant cells for sensitivity to UV light revealed that those carrying the ftsA10 allele were resistant. It was also observed that in the presence of a multicopy plasmid containing a wild-type ftsZ gene, the ftsQ1 mutant filamented markedly following a nutritional shift-up and that the division rate of ftsZ84 mutant cells was slightly reduced when they harbored a wild-type ftsQ-containing plasmid. The possibility that the Fts proteins are interacting with one another and forming a molecular complex is discussed.  相似文献   
934.
B G Hall  W Faunce  rd 《Journal of bacteriology》1987,169(6):2713-2717
The genes for utilization of cellobiose are normally cryptic in both laboratory strains and natural isolates of Escherichia coli. A survey of natural isolates of E. coli reveals that functional genes for cellobiose utilization, while rare, are present. The fraction of E. coli that utilized cellobiose ranged from less than 0.01% in human fecal samples to 7% in fecal samples obtained from horses. Samples obtained from sheep, cows, dogs, and pigs contained 0.1 to 0.5% cellobiose-positive E. coli. Neither the previously identified cel genes nor the bgl genes from E. coli K-12 were expressed during growth on cellobiose by any of the 14 naturally occurring Cel+ isolates that were tested. All of the naturally occurring Cel+ isolates possessed a cel operon, but all were deleted for the major portion of the bgl operon. The functional cel+ genes from these natural isolates differed from the mutationally activated cel+ genes obtained in earlier studies in that (i) the mutationally activated cel+ genes were temperature sensitive, while the functional genes were not, and (ii) transport of cellobiose was inducible in the strains carrying functional cel+ genes, while it was expressed constitutively in strains carrying mutationally activated genes.  相似文献   
935.
M Yamada  M H Saier  Jr 《Journal of bacteriology》1987,169(7):2990-2994
The glucitol (gut) operon has been identified in the colony bank of Clark and Carbon (A. Sancar and W. D. Rupp, Proc. Natl. Acad. Sci. USA 76:3144-3148, 1979). We subcloned the gut operon by using paCYC184, pACYC177, and pBR322. The operon, which is encoded in a 3.3-kilobase nucleotide fragment, consists of the gutC, gutA, gutB, and gutD genes. The repressor of the gut operon seemed to be encoded in the region downstream from the operon. The gene products of the gut operon were identified by using maxicells. The apparent molecular weights of the glucitol-specific enzyme II (product of the gutA gene), enzyme III (product of the gutB gene), and glucitol-6-phosphate dehydrogenase (product of the gutD gene) were about 46,000, 13,500, and 27,000, respectively, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   
936.
Escherichia coli has several overlapping DNA repair pathways which act in concert to eliminate the DNA damage caused by a diverse array of physical and chemical agents. The ABC excinuclease which is encoded by the uvrA, uvrB, and uvrC genes mediates both the incision and excision steps of nucleotide excision repair. Traditionally, this repair pathway has been assumed to be active against DNA adducts that cause major helical distortions. To determine the level of helical deformity required for recognition and repair by ABC excinuclease, we have evaluated the substrate specificity of this enzyme by using DNA damaged by N-methyl-N'-nitro-N-nitrosoguanidine. ABC excinuclease incised methylated DNA in vitro in a dose-dependent manner in a reaction that was ATP dependent and specific for the fully reconstituted enzyme. In vivo studies with various alkylation repair-deficient mutants indicated that the excinuclease participated in the repair of DNA damage induced by N-methyl-N'-nitro-N-nitrosoguanidine.  相似文献   
937.
938.
In Alcaligenes eutrophus, the formation of the hydrogenases and of five new peptides is subject to the hydrogenase control system. Of these, the B peptide was purified to homogeneity. This protein (Mr, 37,500) was composed of two identical subunits (Mr, 18,800). Antibodies against the B protein were used for its quantification by rocket immunoelectrophoresis. About 4% of the total protein consisted of the B protein; its molar ratio to the NAD-linked hydrogenase was about 4:1. The B protein appeared to be associated with the NAD-linked hydrogenase, as shown by gel filtration analysis with Sephadex G-200. The B protein was not detected in cells that had not expressed the hydrogenase proteins or that lacked the genetic information of the hydrogen-oxidizing character; it was also not detected in Tn5 insertional mutants that were unable to form soluble hydrogenase antigens. Immunochemical analysis of other species and genera than A. eutrophus revealed that only strains able to form a NAD-linked hydrogenase also formed B-protein antigens. The B protein is not required for the catalytic activity of soluble hydrogenase in vitro; its function is at present unknown.  相似文献   
939.
940.
The addition of L-serine to inositol-containing growth medium repressed membrane-associated CDPdiacylglycerol synthase (CTP:phosphatidate cytidylyltransferase, EC 2.7.7.41) and phosphatidylserine synthase (CDPdiacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) activities and subunit levels in wild-type Saccharomyces cerevisiae. Enzyme activities and subunit levels were not repressed when inositol was absent from the growth medium. The addition of L-serine to the growth medium did not affect the phospholipid composition of wild-type cells. CDPdiacylglycerol synthase and phosphatidylserine synthase were not regulated in the S. cerevisiae inositol biosynthesis ino2, ino4, and opi1 regulatory mutants, suggesting that regulation by inositol plus L-serine is coupled to inositol synthesis. Inositol and L-serine did not affect the activities of purified CDPdiacylglycerol synthase and phosphatidylserine synthase. The addition of compounds structurally related to L-serine to the growth medium of wild-type cells also resulted in a repression of CDPdiacylglycerol synthase and phosphatidylserine synthase but only in the presence of inositol. Phosphatidylinositol synthase (CDPdiacylglycerol:myo-inositol 3-phosphatidyltransferase, EC 2.7.8.11) was not regulated by inositol plus L-serine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号