首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1268篇
  免费   124篇
  2021年   15篇
  2020年   12篇
  2019年   13篇
  2018年   14篇
  2017年   13篇
  2016年   17篇
  2015年   38篇
  2014年   50篇
  2013年   51篇
  2012年   49篇
  2011年   55篇
  2010年   30篇
  2009年   36篇
  2008年   58篇
  2007年   58篇
  2006年   44篇
  2005年   51篇
  2004年   30篇
  2003年   37篇
  2002年   40篇
  2001年   21篇
  2000年   42篇
  1999年   28篇
  1998年   19篇
  1997年   14篇
  1996年   12篇
  1995年   13篇
  1994年   12篇
  1993年   10篇
  1992年   15篇
  1991年   31篇
  1990年   24篇
  1989年   20篇
  1988年   17篇
  1987年   12篇
  1986年   19篇
  1985年   20篇
  1984年   29篇
  1983年   26篇
  1982年   15篇
  1981年   20篇
  1980年   8篇
  1979年   21篇
  1978年   21篇
  1977年   26篇
  1976年   25篇
  1975年   15篇
  1974年   13篇
  1973年   19篇
  1972年   16篇
排序方式: 共有1392条查询结果,搜索用时 15 毫秒
91.
Peroxisome proliferator-activated receptor-gamma (PPARgamma), a member of the nuclear hormone receptor superfamily, plays an essential role in the mediation of the actions of antidiabetic drugs known as thiazolidinediones (TZDs). PPARgamma activates many target genes involved in lipid anabolism including the adipocyte fatty acid binding protein (aP2). In this study, induction of aP2 gene expression by PPARgamma agonists was examined in both cultured cells and diabetic mice using branched DNA (bDNA)-mediated mRNA quantitation. bDNA technology allows for the direct measurement of a particular mRNA directly within cellular lysate using a 96-well plate format in a time frame comparable to a reporter gene assay. In cultured human subcutaneous preadipocytes, the TZDs, troglitazone and BRL-49653, both rapidly induced aP2 mRNA as detected with the bDNA method. In these cells, the effect of BRL-49653 on aP2 mRNA levels was detectable as early as 30 min after treatment (47% increase) and was maximal after 24 h of treatment (12-fold increase). The effects of troglitazone on aP2 mRNA induction were similar to those of BRL-49653 except that the maximal level of induction was consistently lower (e.g. 24 h treatment = 4-fold increase). Dose-response relationships for both of the TZDs were also determined using the 24-h treatment time point. EC50s for both BRL-49653 and troglitazone were estimated to be 80 nM and 690 nM, respectively. A natural PPARgamma ligand, 15-deoxy-delta12,14-PGJ2, was also active in this assay with a maximal induction of aP2 mRNA of approximately 5-fold when tested at 1 microM. Since the PPARgamma:retinoid X receptor (RXR) heterodimer has been characterized as a permissive heterodimer with respect to RXR ligands, the ability of 9-cis-retinoic acid (9-cis-RA) to induce aP2 mRNA was examined. Although 9-cis-RA had very low efficacy (2-fold induction), the maximal effect was reached at 100 nM. No synergism or additivity in aP2 mRNA induction was detected when 9-cis-RA was included with either of the TZDs used in this study. Significant induction of aP2 mRNA in bone marrow of db/db mice treated with either troglitazone or BRL-49653 was also detected, indicating that the bDNA assay may be a simple method to monitor nuclear receptor target gene induction in vivo.  相似文献   
92.
93.
CD40 ligand (CD40L) is a 33-kDa type II membrane glycoprotein mainly expressed on activated CD4(+) T cells in trimeric form. When it is mutated, the clinical consequences are X-linked hyper-IgM syndrome (XHIM), a primary immunodeficiency disorder characterized by low levels of IgG, IgA, and elevated or normal levels of IgM. Mutated CD40L can no longer bind CD40 nor provide signals for B cells to proliferate and to switch from IgM to other immunoglobulin isotypes. When considering gene therapy for XHIM, it is important to address the possibility that the mutated CD40L associates with transduced wild type CD40L, and as a consequence, immune reconstitution is not attained. In this study, we demonstrate that the various mutated CD40L species we have identified in patients with XHIM, including both full-length and truncated mutants, associate with wild type CD40L on the cell surface of co-transfected COS cells. The association between wild type and mutated CD40L was also observed in CD4(+) T cell lines established from XHIM patients with leaky splice site mutations. The clinical phenotype of these patients suggests that this association between wild type and mutated CD40L species may result in less efficient cross-linking of CD40.  相似文献   
94.
95.
96.
We have developed a genetic approach to examine the role of spontaneous activity and synaptic release in the establishment and maintenance of an olfactory sensory map. Conditional expression of tetanus toxin light chain, a molecule that inhibits synaptic release, does not perturb targeting during development, but neurons that express this molecule in a competitive environment fail to maintain appropriate synaptic connections and disappear. Overexpression of the inward rectifying potassium channel, Kir2.1, diminishes the excitability of sensory neurons and more severely disrupts the formation of an olfactory map. These studies suggest that spontaneous neural activity is required for the establishment and maintenance of the precise connectivity inherent in an olfactory sensory map.  相似文献   
97.

Background  

ChaB is a putative regulator of ChaA, a Na+/H+ antiporter that also has Ca+/H+ activity in E. coli. ChaB contains a conserved 60-residue region of unknown function found in other bacteria, archaeabacteria and a series of baculoviral proteins. As part of a structural genomics project, the structure of ChaB was elucidated by NMR spectroscopy.  相似文献   
98.
aIF2 beta is the archaeal homolog of eIF2 beta, a member of the eIF2 heterotrimeric complex, implicated in the delivery of Met-tRNA(i)(Met) to the 40S ribosomal subunit. We have determined the solution structure of the intact beta-subunit of aIF2 from Methanobacterium thermoautotrophicum. aIF2 beta is composed of an unfolded N terminus, a mixed alpha/beta core domain and a C-terminal zinc finger. NMR data shows the two folded domains display restricted mobility with respect to each other. Analysis of the aIF2 gamma structure docked to tRNA allowed the identification of a putative binding site for the beta-subunit in the ternary translation complex. Based on structural similarity and biochemical data, a role for the different secondary structure elements is suggested.  相似文献   
99.
Heteronuclear NMR methods have been used to probe the conformation of four complexes of Escherichia coli dihydrofolate reductase (DHFR) in solution. (1)H(N), (15)N, and (13)C(alpha) resonance assignments have been made for the ternary complex with folate and oxidized NADP(+) cofactor and the ternary complex with folate and a reduced cofactor analog, 5,6-dihydroNADPH. The backbone chemical shifts have been compared with those of the binary complex of DHFR with the substrate analog folate and the binary complex with NADPH (the holoenzyme). Analysis of (1)H(N) and (15)N chemical shifts has led to the identification of marker resonances that report on the active site conformation of the enzyme. Other backbone amide resonances report on the presence of ligands in the pterin binding pocket and in the adenosine and nicotinamide-ribose binding sites of the NADPH cofactor. The chemical shift data indicate that the enzyme populates two dominant structural states in solution, with the active site loops in either the closed or occluded conformations defined by X-ray crystallography; there is no evidence that the open conformation observed in some X-ray structures of E. coli DHFR are populated in solution.  相似文献   
100.
1-15N-L-Tryptophan (1-15N-L-Trp) was synthesized from 15N-aniline by a Sandmeyer reaction, followed by cyclization to isatin, reduction to indole with LiAlH4, and condensation of the 15N-indole with L-serine, catalyzed by tryptophan synthase. 1-15N-L-Trp was complexed with wild-type tryptophan synthase and beta-subunit mutants, betaK87T, betaD305A, and betaE109D, in the absence or presence of the allosteric ligands sodium chloride and disodium alpha-glycerophosphate. The enzyme complexes were observed by 15N-heteronuclear single-quantum coherence nuclear magnetic resonance (15N-HSQC NMR) spectroscopy for the presence of 1-15N-L-Trp bound to the beta-active site. No 15N-HSQC signal was detected for 1-15N-L-Trp in 10 mm triethanolamine hydrochloride buffer at pH 8. 1-15N-L-Trp in the presence of wild-type tryptophan synthase in the absence or presence of 50 mm sodium chloride showed a cross peak at 10.25 ppm on the 1H axis and 129 ppm on the 15N axis as a result of reduced solvent exchange for the bound 1-15N-L-Trp, consistent with formation of a closed conformation of the active site. The addition of disodium alpha-glycerophosphate produced a signal twice as intense, suggesting that the equilibrium favors the closed conformation. 15N-HSQC NMR spectra of betaK87T and betaE109D mutant Trp synthase with 1-15N-L-Trp showed a similar cross peak either in the presence or absence of disodium alpha-glycerophosphate, indicating the preference for a closed conformation for these mutant proteins. In contrast, the betaD305A Trp synthase mutant only showed a 15N-HSQC signal in the presence of disodium alpha-glycerophosphate. Thus, this mutant Trp synthase favored an open conformation in the absence of disodium alpha-glycerophosphate but was able to form a closed conformation in the presence of disodium alpha-glycerophosphate. Our results demonstrate that the 15N-HSQC NMR spectra of 1-15N-L-Trp bound to Trp synthase can be used to determine the conformational state of mutant forms in solution rapidly. In contrast, UV-visible spectra of wild-type and mutant Trp synthase in the presence of L-Trp with NaCl and/or disodium alpha-glycerophosphate are more difficult to interpret in terms of altered conformational equilibria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号