首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   36篇
  2021年   3篇
  2020年   4篇
  2019年   6篇
  2018年   7篇
  2017年   6篇
  2016年   7篇
  2015年   7篇
  2014年   9篇
  2013年   5篇
  2012年   9篇
  2011年   14篇
  2010年   2篇
  2009年   7篇
  2008年   12篇
  2007年   12篇
  2006年   11篇
  2005年   5篇
  2004年   7篇
  2003年   8篇
  2002年   7篇
  2001年   6篇
  2000年   14篇
  1999年   9篇
  1998年   7篇
  1997年   5篇
  1996年   2篇
  1994年   6篇
  1992年   6篇
  1991年   6篇
  1990年   4篇
  1989年   5篇
  1988年   2篇
  1987年   4篇
  1986年   5篇
  1985年   4篇
  1983年   3篇
  1982年   2篇
  1980年   2篇
  1979年   4篇
  1978年   4篇
  1977年   7篇
  1976年   2篇
  1975年   5篇
  1974年   8篇
  1973年   6篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1946年   2篇
  1921年   1篇
排序方式: 共有293条查询结果,搜索用时 15 毫秒
31.
Gundry RL  Burridge PW  Boheler KR 《Proteomics》2011,11(20):3947-3961
Stem cells represent obvious choices for regenerative medicine and are invaluable for studies of human development and drug testing. The proteomic landscape of pluripotent stem cells (PSCs), in particular, is not yet clearly defined; consequently, this field of research would greatly benefit from concerted efforts designed to better characterize these cells. In this concise review, we provide an overview of stem cell potency, highlight the types and practical implications of heterogeneity in PSCs and provide a detailed analysis of the current view of the pluripotent proteome in a unique resource for this rapidly evolving field. Our goal in this review is to provide specific insights into the current status of the known proteome of both mouse and human PSCs. This has been accomplished by integrating published data into a unified PSC proteome to facilitate the identification of proteins, which may be informative for the stem cell state as well as to reveal areas where our current view is limited. These analyses provide insight into the challenges faced in the proteomic analysis of PSCs and reveal one area--the cell surface subproteome--that would especially benefit from enhanced research efforts.  相似文献   
32.

Background

The production of cardiomyocytes from human induced pluripotent stem cells (hiPSC) holds great promise for patient-specific cardiotoxicity drug testing, disease modeling, and cardiac regeneration. However, existing protocols for the differentiation of hiPSC to the cardiac lineage are inefficient and highly variable. We describe a highly efficient system for differentiation of human embryonic stem cells (hESC) and hiPSC to the cardiac lineage. This system eliminated the variability in cardiac differentiation capacity of a variety of human pluripotent stem cells (hPSC), including hiPSC generated from CD34+ cord blood using non-viral, non-integrating methods.

Methodology/Principal Findings

We systematically and rigorously optimized >45 experimental variables to develop a universal cardiac differentiation system that produced contracting human embryoid bodies (hEB) with an improved efficiency of 94.7±2.4% in an accelerated nine days from four hESC and seven hiPSC lines tested, including hiPSC derived from neonatal CD34+ cord blood and adult fibroblasts using non-integrating episomal plasmids. This cost-effective differentiation method employed forced aggregation hEB formation in a chemically defined medium, along with staged exposure to physiological (5%) oxygen, and optimized concentrations of mesodermal morphogens BMP4 and FGF2, polyvinyl alcohol, serum, and insulin. The contracting hEB derived using these methods were composed of high percentages (64–89%) of cardiac troponin I+ cells that displayed ultrastructural properties of functional cardiomyocytes and uniform electrophysiological profiles responsive to cardioactive drugs.

Conclusion/Significance

This efficient and cost-effective universal system for cardiac differentiation of hiPSC allows a potentially unlimited production of functional cardiomyocytes suitable for application to hPSC-based drug development, cardiac disease modeling, and the future generation of clinically-safe nonviral human cardiac cells for regenerative medicine.  相似文献   
33.
The complete mitochondrial DNA sequence was determined for the Australian giant crab Pseudocarcinns gigas (Crustacea: Decapoda: Menippidae) and the giant freshwater shrimp Macrobrachium rosenbergii (Crustacea: Decapoda: Palaemonidae). The Pse gigas and Mrosenbergii mitochondrial genomes are circular molecules, 15,515 and 15,772 bp in length, respectively, and have the same gene composition as found in other metazoans. The gene arrangement of M. rosenbergii corresponds with that of the presumed ancestral arthropod gene order, represented by Limulus polyphemus, except for the position of the tRNALeu(UUR) gene. The Pse. gigas gene arrangement corresponds exactly with that reported for another brachyuran, Portunus trituberculatus, and differs from the M. rosenbergii gene order by only the position of the tRNAHis gene. Given the relative positions of intergenic nonoding nucleotides, the “duplication/random loss” model appears to be the most plausible mechanism for the translocation of this gene. These data represent the first caridean and only the second brachyuran complete mtDNA sequences, and a source of information that will facilitate surveys of intraspecific variation within these commercially important decapod species.  相似文献   
34.
35.

Background

Metastasis, the process whereby cancer cells spread, is in part caused by an incompletely understood interplay between cancer cells and the surrounding stroma. Gene expression studies typically analyze samples containing tumor cells and stroma. Samples with less than 50% tumor cells are generally excluded, thereby reducing the number of patients that can benefit from clinically relevant signatures.

Results

For a head-neck squamous cell carcinoma (HNSCC) primary tumor expression signature that predicts the presence of lymph node metastasis, we first show that reduced proportions of tumor cells results in decreased predictive accuracy. To determine the influence of stroma on the predictive signature and to investigate the interaction between tumor cells and the surrounding microenvironment, we used laser capture microdissection to divide the metastatic signature into six distinct components based on tumor versus stroma expression and on association with the metastatic phenotype. A strikingly skewed distribution of metastasis associated genes is revealed.

Conclusion

Dissection of predictive signatures into different components has implications for design of expression signatures and for our understanding of the metastatic process. Compared to primary tumors that have not formed metastases, primary HNSCC tumors that have metastasized are characterized by predominant down-regulation of tumor cell specific genes and exclusive up-regulation of stromal cell specific genes. The skewed distribution agrees with poor signature performance on samples that contain less than 50% tumor cells. Methods for reducing tumor composition bias that lead to greater predictive accuracy and an increase in the types of samples that can be included are presented.  相似文献   
36.
Cardiovascular disease is a leading cause of death worldwide. The limited capability of heart tissue to regenerate has prompted methodological developments for creating de novo cardiomyocytes, both in vitro and in vivo. Beyond uses in cell replacement therapy, patient-specific cardiomyocytes may find applications in drug testing, drug discovery, and disease modeling. Recently, approaches for generating cardiomyocytes have expanded to encompass three major sources of starting cells: human pluripotent stem cells (hPSCs), adult heart-derived cardiac progenitor cells (CPCs), and reprogrammed fibroblasts. We discuss state-of-the-art methods for generating de novo cardiomyocytes from hPSCs and reprogrammed fibroblasts, highlighting potential applications and future challenges.  相似文献   
37.
38.
Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase that plays a key role in cellular processes such as cell adhesion, migration, proliferation and survival. Recent studies have also implicated FAK in the regulation of cell-cell adhesion. Here, evidence is presented showing that siRNA-mediated suppression of FAK levels in NBT-II cells and expression of dominant negative mutants of FAK caused loss of epithelial cell morphology and inhibited the formation of cell-cell adhesions. Rac and Rho have been implicated in the regulation of cell-cell adhesions and can be regulated by FAK signaling. Expression of active Rac or Rho in NBT-II cells disrupted formation of cell-cell contacts, thus promoting a phenotype similar to FAK-depleted cells. The loss of intercellular contacts in FAK-depleted cells is prevented upon expression of a dominant negative Rho mutant, but not a dominant negative Rac mutant. Inhibition of FAK decreased tyrosine phosphorylation of p190RhoGAP and elevated the level of GTP-bound Rho. This suggests that FAK regulates cell-cell contact formation by regulation of Rho.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号