首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   4篇
  190篇
  2018年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   7篇
  2011年   12篇
  2010年   17篇
  2009年   24篇
  2008年   11篇
  2007年   10篇
  2006年   13篇
  2005年   6篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   5篇
  1997年   7篇
  1996年   8篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1972年   1篇
  1971年   1篇
  1958年   3篇
  1957年   5篇
  1955年   1篇
  1954年   1篇
  1951年   2篇
  1950年   1篇
排序方式: 共有190条查询结果,搜索用时 0 毫秒
81.
1. Although stream–catchment interactions have been analysed in some detail in temperate environments, little is known about the effects of land‐use changes in the tropics. Here, we analyse differences in benthic communities (macroinvertebrates and fungi) under two contrasting land uses (mature secondary forest and pasture) in montane streams in north‐western Ecuador and their influence on the rates of litter processing. 2. Between 2005 and 2006, we used a combination of coarse and fine mesh bags to study the relative contribution of macroinvertebrates and fungi to processing of two types of litter, Alnus acuminata and Inga spectabilis, in three‐first‐order streams running through mature secondary montane forests and adjacent downstream reaches running through pastures. At the same time, we characterised the assemblages of shreddering macroinvertebrates and fungi communities and the litter processing rates in stream reaches under both vegetation types. 3. Litter processing rates attributable to invertebrate feeding (coarse mesh bags) were significantly slower in streams running through pastures. Nevertheless, shredder diversity and richness were similar between pasture and forest sections, while shredder abundance was significantly higher in forest streams (mainly Phylloicus sp. :Trichoptera). Fungal reproductive activity and litter processing rates were low (fine mesh bags) and did not differ significantly between pasture and forest stream reaches. 4. Phylloicus sp. abundance was the best predictor of the percentage of litter remaining in coarse mesh bags across pasture and forest sites. Neither shredder diversity nor their species richness was a significant predictor of mass loss, as most of the decomposition was performed by a single keystone species. Although litter decomposition by microbial decomposers was low, fungal biomass (but not diversity) was the best variable explaining the percentage of litter remaining in fine mesh bags. 5. Our data suggest that, in these Neotropical montane streams, land use can have a significant impact on the rates of critical ecosystem processes, such as litter decomposition. In this study, this effect was not mediated by a major shift in the structure of the benthos, but by a decrease in the abundance and relative representation of a single species whose life history makes it critical to litter processing. 6. This study highlights the significant role that macroinvertebrate fauna can have in the processing of litter in Neotropical streams and the predominant role that single species can have in terms of controlling stream ecosystem‐level processes. Understanding the extent to which these patterns affect the long‐term and large‐scale functioning of stream ecosystems still needs further research and will become increasingly important in terms of managing lotic ecosystems in the context of rapid land‐use change.  相似文献   
82.
Extreme environments are often considered a predation refuge for organisms living in them. In southern Mexico several species of poeciliid fishes are undergoing incipient speciation in a variety of extreme (i.e. permanently dark and/or sulphidic) freshwater systems, and previous research has demonstrated reproductive isolation between populations from sulphidic and adjacent benign habitats. In the present study, we investigated bird predation rates (measured as successful captures per minute) in two sulphidic surface and several benign surface habitats, to test the hypothesis that extreme habitats are predation refuges. We found capture rates to be approximately 20 times higher in sulphidic environments: probably facilitated by extremophile poeciliids spending most of their time at the water surface, where they engage in aquatic surface respiration as a direct response to hypoxia. Even birds that are usually not considered major fish predators regularly engage in fish predation in the toxic habitats of southern Mexico. Our results demonstrate that extreme environments do not necessarily represent a refuge from predation, and we discuss the general importance of predation in driving incipient speciation in these systems. Finally, we hypothesize that natural selection via avian predation may play an important role in maintaining reproductive isolation between divergent poeciliid populations. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 417–426.  相似文献   
83.
We aimed to quantify the separate effects of photosynthetic and postphotosynthetic carbon isotope discrimination on δ13C of the fast‐turn‐over carbon pool (water soluble organic carbon and CO2 emitted from heterotrophic tissues), including their diel variation, along the pathway of carbon transport from the foliage to the base of the stem. For that purpose, we determined δ13C in total and water‐soluble organic matter of the foliage plus δ13C and δ18O in phloem organic matter of twigs and at three heights along the stem of Pinus sylvestris over a nine‐day period, including four measurements per day. These data were related to meteorological and photosynthesis parameters and to the δ13C of stem‐emitted CO2. In the canopy (foliage and twigs), the δ13C of soluble organic matter varied diurnally with amplitudes of up to 1.9‰. The greatest 13C enrichment was recorded during the night/early morning, indicating a strong influence of starch storage and remobilization on the carbon isotope signatures of sugars exported from the leaves. 13C enrichment of soluble organic matter from the leaves to the twig phloem and further on to the phloem of the stem was supposed to be a result of carbon isotope fractionation associated with metabolic processes in the source and sink tissues. CO2 emitted from the stem was enriched by 2.3–5.2‰ compared with phloem organic matter. When day‐to‐day variation was addressed, water‐soluble leaf δ13C and twig phloem δ18O were strongly influenced by ci/ca and stomatal conductance (Gs), respectively. These results show that both photosynthetic and postphotosynthetic carbon isotope fractionation influence δ13C of organic matter over time, and over the length of the basipetal transport pathway. Clearly, these influences on the δ13C of respired CO2 must be considered when using the latter for partitioning of ecosystem CO2 fluxes or when the assessment of δ13C in organic matter is applied to estimate environmental effects in ci/ca.  相似文献   
84.
Phyllanthus retroflexus Brade is reinstated. It and the very similar P. subemarginatus Müll. Arg. are described, illustrated, and their relationships are discussed, based on a morphological analysis of herbarium specimens. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 78–81.  相似文献   
85.
1. We conducted an experimental study of predation by benthivorous fish on a natural community of stream invertebrates using a reach‐scale approach. Over a 2‐year period (experimental phase), the benthic invertebrate community of a stretch containing two species of benthivorous fish was compared with a fishless stretch. Thereafter, all fish were removed and benthic community structure was analysed again to account for natural differences between the two stretches (reference phase). 2. Benthivorous fish at the moderate densities investigated did not affect total benthic biomass or density, but did alter species composition. In addition, the fish effect differed between pool and riffle habitats, with larger effects in the pools indicating a habitat‐specific predation effect. In the reference phase, when all fish were removed from the stream, the difference between the two stretches was reduced. 3. The benthivorous fish reduced the densities of four taxa (Pisidium sp., Dugesia gonocephala, Gammarus pulex, Limoniidae), representing 29% of total biomass. It is possible that density reductions of other species were masked by prey migration despite the relatively large spatial scale. Indeed, higher drift activity in the upstream fishless stretch could have increased the density of Baetis rhodani in the fish stretch, as indicated by the results of a drift model. 4. Our results provide insights into stream food web ecology because fish predation showed effects even in a natural system where habitat complexity was high, environmental factors were highly variable and many predator and prey species interacted and because benthivorous fish were the focus, whereas the majority of previous predation experiments in streams have used drift‐feeding trout.  相似文献   
86.
87.
88.
Much of our understanding about how carbon (C) is allocated in plants comes from radiocarbon (14C) pulse‐chase labeling experiments. However, the large amounts of 14C required for decay‐counting mean that these studies have been restricted for the most part to mesocosm or controlled laboratory experiments. Using the enhanced sensitivity for 14C detection available with accelerator mass spectrometry (AMS), we tested the utility of a low‐level 14C pulse‐chase labeling technique for quantifying C allocation patterns and the contributions of different plant components to total ecosystem respiration in a black spruce forest stand in central Manitoba, Canada. All aspects of the field experiment used 14C at levels well below regulated health standards, without significantly altering atmospheric CO2 concentrations. Over 30 days following the label application in late summer (August and September), we monitored the temporal and spatial allocation patterns of labeled photosynthetic products by measuring the amount and 14C content of CO2 respired from different ecosystem components. The mean residence times (MRT) for labeled photosynthetic products to be respired in the understory (feather mosses), canopy (black spruce), and rhizosphere (black spruce roots and associated microbes) were <1, 6, and 15 days, respectively. Respiration from the canopy and understory showed significantly greater influence of labeled photosynthates than excised root and intact rhizosphere respiration. After 30 days,∼65% of the label assimilated had been respired by the canopy,∼20% by the rhizosphere, and∼9% by the understory, with∼6% unaccounted for and perhaps remaining in tissues. Maximum 14C values in root and rhizosphere respiration were reached 4 days after label application. The label was still detectable in root, rhizosphere and canopy respiration after 30 days; these levels of remaining label would not have been detectible had a 13C label been applied. Our results support previous studies indicating that a substantial portion of the C fueling rhizosphere respiration in the growing season may be derived from stored C pools rather than recent photosynthetic products.  相似文献   
89.
The present study investigated the relationship between time since death and the morphological characteristics of fallen dead trees in a Nothofagus betuloides forest stand located on the island of Navarino (Chile). In this unmanaged forest, there were 399 m3 ha?1 of dead wood, which represented about half of the living tree volume. At the investigation site, 18 living trees were selected and increment cores were collected from them to build master ring‐width chronologies. Cross sections were also collected from 48 fallen dead trees. The samples collected were then assigned to observable decay classes and their death date was determined dendrochronologically. Cross‐dating techniques were used and it was found that the fallen dead trees cross‐dated significantly with standard chronologies. A year of death was successfully determined for 75% of the sampled fallen dead trees. However, this study demonstrated that, in the standard classification, the transition rate from one class of decay to another was highly variable. Furthermore, the inconsistencies found in the decay rates of the fallen dead trees demonstrated that the existing decay classification schemes were unsuitable for this type of forest stand and that the relationship between qualitatively assessed decay classes and the time since death of trees in this extreme environment was rather weak. In addition, the analysis of the time since death, in this old growth forest, was indicative of the persistence of dead wood on the forest floor in austral cold ecosystems and of its contribution to long‐term carbon storage.  相似文献   
90.
The colonization, distribution, population density, and species diversity of amoebae on leaves of Oak Leaf lettuce, Lactuca sativa var. crispa, and Boston lettuce, L. sativa var. capitata, were investigated. The role of soil in the colonization of Oak Leaf lettuce was determined by comparing numbers of amoebae present on basal leaves (those that pass through soil) with numbers on wrapped leaves (those that do not pass through soil). Amoebae were present in ten samples of basal leaves and ranged from 154–1510/g of leaf tissue. Wrapped leaves failed to yield amoebae in seven of ten trials and contained <4 amoebae/g of tissue. Mean values for the population density of amoebae on Oak Leaf basal leaves and Boston lettuce leaves were 484 ± 133 and 453 ± 93, respectively. The distribution of amoebae on green and white parts of leaves from both kinds of lettuce was studied. The occurrence of amoebae on rinsed, unrinsed, visibly clean, and visibly dirty samples of Boston lettuce leaves was established.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号