首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   40篇
  331篇
  2022年   3篇
  2021年   10篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   8篇
  2014年   13篇
  2013年   14篇
  2012年   19篇
  2011年   19篇
  2010年   9篇
  2009年   8篇
  2008年   14篇
  2007年   11篇
  2006年   8篇
  2005年   15篇
  2004年   5篇
  2003年   8篇
  2002年   15篇
  2001年   6篇
  2000年   11篇
  1999年   7篇
  1998年   5篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1992年   5篇
  1991年   3篇
  1989年   4篇
  1988年   5篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1981年   4篇
  1979年   2篇
  1978年   2篇
  1976年   3篇
  1975年   9篇
  1974年   4篇
  1973年   3篇
  1972年   2篇
  1971年   8篇
  1970年   2篇
  1969年   4篇
  1968年   4篇
  1967年   2篇
排序方式: 共有331条查询结果,搜索用时 0 毫秒
101.
Mitochondrial fusion and fission are important for a great variety of cellular functions, including energy metabolism, development, aging and cell death. Many of the core components mediating mitochondrial dynamics in human cells have been first identified and mechanistically analyzed in model organisms, such as Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster. In particular, the functions of FZO/mitofusin and Mgm1/EAT-3/OPA1 in fusion and Dnm1/DRP1 in fission have been remarkably well conserved in yeasts, worms, flies and mammals. On the other hand, mechanisms to coordinate and regulate the activity of these molecular machines appear to be more diverse in different organisms. Here, I will discuss how S. cerevisiae, C. elegans and Drosophila have contributed to our current understanding of the cellular machineries mediating the dynamic behaviour of mitochondria.  相似文献   
102.
 Granulocyte/macrophage-colony-stimulating factor (GM-CSF) plays a central role in the differentiation and function of dendritic cells, which are crucial for the elicitation of MHC-restricted T cell responses. Preclinical and the first clinical data provide a rationale for the application of GM-CSF in immunotherapy of cancer. Ten patients with renal cell carcinoma stage IV (Holland/Robson) were treated in this pilot study. Therapy was started with GM-CSF alone (2 weeks). Interleukin (IL-2) and interferon α (IFNα) were added sequentially (3 weeks GM-CSF plus IL-2 or IFNα, 3 weeks GM-CSF plus IL-2 plus IFNα). Therapy was performed on an outpatient basis. The cytokine regimen was evaluated for toxicity, clinical response and immunomodulatory effects [fluorescence-activated cell sorting analysis of peripheral blood mononuclear cells (PBMC), mixed-lymphocyte reaction and cytotoxicity of PBMC]. GM-CSF treatment caused a significant increase in the number of PBMC expressing costimulatory molecules. Addition of IL-2 and IFNα led to an increase in CD3+, CD4+, CD8+ and CD56+ PBMC in week 9. In an autologous mixed-lymphocyte reaction a 2.1-fold increase in T cell proliferation was observed after 2 weeks of GM-CSF treatment, and cytotoxicity assays showed changes in natural-killer- (NK)- and non-NK-mediated cytotoxicity in some patients. Two patients achieved partial remission, one patient had a mixed response. The toxicity of the regimen was mild to moderate with fever, flu-like symptoms and nausea being observed in most patients. Severe organ toxicity was not observed. We conclude that GM-CSF might be useful for immunotherapy of renal cell carcinoma, especially in combination with T-cell-active cytokines. Further studies are warranted. Received: 16 March 2000 / Accepted: 10 August 2000  相似文献   
103.
Filamentous fungi represent classical examples for environmentally acquired human pathogens whose major virulence mechanisms are likely to have emerged long before the appearance of innate immune systems. In natural habitats, amoeba predation could impose a major selection pressure towards the acquisition of virulence attributes. To test this hypothesis, we exploited the amoeba Dictyostelium discoideum to study its interaction with Aspergillus fumigatus, two abundant soil inhabitants for which we found co‐occurrence in various sites. Fungal conidia were efficiently taken up by D. discoideum, but ingestion was higher when conidia were devoid of the green fungal spore pigment dihydroxynaphtalene melanin, in line with earlier results obtained for immune cells. Conidia were able to survive phagocytic processing, and intracellular germination was initiated only after several hours of co‐incubation which eventually led to a lethal disruption of the host cell. Besides phagocytic interactions, both amoeba and fungus secreted cross inhibitory factors which suppressed fungal growth or induced amoeba aggregation with subsequent cell lysis, respectively. On the fungal side, we identified gliotoxin as the major fungal factor killing Dictyostelium, supporting the idea that major virulence attributes, such as escape from phagocytosis and the secretion of mycotoxins are beneficial to escape from environmental predators.  相似文献   
104.
Mge1p, a mitochondrial GrpE homologue, has recently been identified in the yeast Saccharomyces cerevisiae and a role for this protein in precursor import has been reported. To dissect the molecular mechanism of Mge1p function, conditional mge1 mutants were constructed. Cells harbouring mutant mge1 accumulated precursor proteins at restrictive temperature. Both kinetics and efficiency of import were reduced in mitochondria isolated from strains possessing mutant mge1. Binding of mitochondrial-Hsp70 (mt-Hsp70) to incoming precursor proteins was abolished at restrictive temperature. Nucleotide-dependent dissociation of mt-Hsp70 from the import component MIM44 was reduced in mitochondria from mutant mge1 strains. Furthermore, at restrictive temperature an increase of incompletely folded, newly imported protein and enhanced protein aggregation was observed in mitochondria isolated from the mutant strains. We conclude that Mge1p exerts an essential function in import and folding of proteins by controlling the nucleotide-dependent binding of mt-Hsp70 to substrate proteins and the association of mt-Hsp70 with MIM44.  相似文献   
105.
The actin cytoskeleton is essential for polarized, bud-directed movement of cellular membranes in Saccharomyces cerevisiae and thus ensures accurate inheritance of organelles during cell division. Also, mitochondrial distribution and inheritance depend on the actin cytoskeleton, though the precise molecular mechanisms are unknown. Here, we establish the class V myosin motor protein, Myo2, as an important mediator of mitochondrial motility in budding yeast. We found that mutants with abnormal expression levels of Myo2 or its associated light chain, Mlc1, exhibit aberrant mitochondrial morphology and loss of mitochondrial DNA. Specific mutations in the globular tail of Myo2 lead to aggregation of mitochondria in the mother cell. Isolated mitochondria lacking functional Myo2 are severely impaired in their capacity to bind to actin filaments in vitro. Time-resolved fluorescence microscopy revealed a block of bud-directed anterograde mitochondrial movement in cargo binding-defective myo2 mutant cells. We conclude that Myo2 plays an important and direct role for mitochondrial motility and inheritance in budding yeast.  相似文献   
106.
Methanosarcina barkeri MS and 227 and Methanosarcina mazei S-6 produced acetate when grown on H2-CO2, methanol, or trimethylamine. Marked differences in acetate production by the two bacterial species were found, even though methane and cell yields were nearly the same. M. barkeri produced 30 to 75 μmol of acetate per mmol of CH4 formed, but M. mazei produced only 8 to 9 μmol of acetate per mmol of CH4.  相似文献   
107.
The twin arginine translocation (Tat) system has the capacity to transfer completely folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of plant chloroplasts. The most abundant TatA protein of this system has been suggested to form the protein conducting channel. Here, the molecular organisation of soluble and membrane embedded Bacillus subtilis TatAd was analysed using negative contrast and freeze-fractured electron microscopy. In both compartments, the protein showed homo-oligomerisation. In aqueous solution, TatAd formed homo-multimeric micelle-like complexes. Freeze-fracture analysis of proteoliposomes revealed self association of membrane-integrated TatAd independent from TatCd, the second component of this transport system. Immunogold labelling demonstrated that the substrate prePhoD was co-localised with membrane-integrated TatAd complexes.  相似文献   
108.

Background

High levels of death and morbidity worldwide caused by tuberculosis has stimulated efforts to develop a new vaccine to replace BCG. A number of Mycobacterium tuberculosis (Mtb)-specific antigens have been synthesised as recombinant subunit vaccines for clinical evaluation. Recently a fusion protein of TB antigen Ag85B combined with a second immunodominant TB antigen TB10.4 was emulsified with a novel non-phospholipid-based liposomal adjuvant to produce a new subunit vaccine, investigated here. Currently, there is no consensus as to whether or not long-term T cell memory depends on a source of persisting antigen. To explore this and questions regarding lifespan, phenotype and cytokine patterns of CD4 memory T cells, we developed an animal model in which vaccine-induced CD4 memory T cells could transfer immunity to irradiated recipients.

Methodology/Principal Findings

The transfer of protective immunity using Ag85B-TB10.4-specific, CD45RBlow CD62Llow CD4 T cells was assessed in sub-lethally irradiated recipients following challenge with live BCG, used here as a surrogate for virulent Mtb. Donor T cells also carried an allotype marker allowing us to monitor numbers of antigen-specific, cytokine-producing CD4 T cells in recipients. The results showed that both Ag85B-TB10.4 and BCG vaccination induced immunity that could be transferred with a single injection of 3×106 CD4 T cells. Ten times fewer numbers of CD4 T cells (0.3×106) from donors immunised with Ag85B-TB10.4 vaccine alone, transferred equivalent protection. CD4 T cells from donors primed by BCG and boosted with the vaccine similarly transferred protective immunity. When BCG challenge was delayed for 1 or 2 months after transfer (a test of memory T cell survival) recipients remained protected. Importantly, recipients that contained persisting antigen, either live BCG or inert vaccine, showed significantly higher levels of protection (p<0.01). Overall the numbers of IFN-γ-producing CD4 T cells were poorly correlated with levels of protection.

Conclusions/Significance

The Ag85B-TB10.4 vaccine, with or without BCG-priming, generated TB-specific CD4 T cells that transferred protective immunity in mice challenged with BCG. The level of protection was enhanced in recipients containing a residual source of specific antigen that could be either viable or inert.  相似文献   
109.
Corrinoids are essential cofactors of reductive dehalogenases in anaerobic bacteria. Microorganisms mediating reductive dechlorination as part of their energy metabolism are either capable of de novo corrinoid biosynthesis (e.g., Desulfitobacterium spp.) or dependent on exogenous vitamin B12 (e.g., Dehalococcoides spp.). In this study, the impact of exogenous vitamin B12 (cyanocobalamin) and of tetrachloroethene (PCE) on the synthesis and the subcellular localization of the reductive PCE dehalogenase was investigated in the Gram-positive Desulfitobacterium hafniense strain Y51, a bacterium able to synthesize corrinoids de novo. PCE-depleted cells grown for several subcultivation steps on fumarate as an alternative electron acceptor lost the tetrachloroethene-reductive dehalogenase (PceA) activity by the transposition of the pce gene cluster. In the absence of vitamin B12, a gradual decrease of the PceA activity and protein amount was observed; after 5 subcultivation steps with 10% inoculum, more than 90% of the enzyme activity and of the PceA protein was lost. In the presence of vitamin B12, a significant delay in the decrease of the PceA activity with an ∼90% loss after 20 subcultivation steps was observed. This corresponded to the decrease in the pceA gene level, indicating that exogenous vitamin B12 hampered the transposition of the pce gene cluster. In the absence or presence of exogenous vitamin B12, the intracellular corrinoid level decreased in fumarate-grown cells and the PceA precursor formed catalytically inactive, corrinoid-free multiprotein aggregates. The data indicate that exogenous vitamin B12 is not incorporated into the PceA precursor, even though it affects the transposition of the pce gene cluster.  相似文献   
110.
Mitochondria are complex organelles with two membranes. Their architecture is determined by characteristic folds of the inner membrane, termed cristae. Recent studies in yeast and other organisms led to the identification of four major pathways that cooperate to shape cristae membranes. These include dimer formation of the mitochondrial ATP synthase, assembly of the mitochondrial contact site and cristae organizing system (MICOS), inner membrane remodelling by a dynamin-related GTPase (Mgm1/OPA1), and modulation of the mitochondrial lipid composition. In this review, we describe the function of the evolutionarily conserved machineries involved in mitochondrial cristae biogenesis with a focus on yeast and present current models to explain how their coordinated activities establish mitochondrial membrane architecture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号