首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   7篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   6篇
  2016年   5篇
  2015年   4篇
  2014年   7篇
  2013年   9篇
  2012年   6篇
  2011年   3篇
  2010年   6篇
  2009年   6篇
  2008年   6篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   5篇
  2003年   3篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   9篇
  1996年   1篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
排序方式: 共有108条查询结果,搜索用时 46 毫秒
71.
Rush  JS; Waechter  CJ 《Glycobiology》1998,8(12):1207-1213
In the current model for Glc3Man9GlcNAc2-P-P-Dol assembly, Man5GlcNAc2- P-P-Dol, Man-P-Dol, and Glc-P-Dol are synthesized on the cytoplasmic face of the ER and diffuse transversely to the lumenal leaflet where the synthesis of the lipid-bound precursor oligosaccharide is completed. To establish the topological sites of Glc-P-Dol synthesis and the lipid-mediated glucosyltransfer reactions involved in Glc3Man9GlcNAc2-P-P-Dol synthesis in ER vesicles from pig brain, the trypsin-sensitivity of Glc-P-Dol synthase activity and the Glc-P- Dol:Glc0-2Man9GlcNAc2-P-P-Dol glucosyltransferases (GlcTases) was examined in sealed microsomal vesicles. Since ER vesicles from brain do not contain glucose 6-phosphate (Glc 6-P) phosphatase activity, the latency of the lumenally oriented, processing glucosidase I/II activities was used to assess the intactness of the vesicle preparations. Comparative enzymatic studies with sealed ER vesicles from brain and kidney, a tissue that contains Glc 6-P phosphatase, demonstrate the reliability of using the processing glucosidase activities as latency markers for topological studies with microsomal vesicles from non-gluconeogenic tissues lacking Glc 6-P phosphatase. The results obtained from the trypsin-sensitivity assays with sealed microsomal vesicles from brain are consistent with a topological model in which Glc-P-Dol is synthesized on the cytoplasmic face of the ER, and subsequently utilized by the three Glc-P-Dol-mediated GlcTases after "flip-flopping" to the lumenal monolayer.   相似文献   
72.
73.
74.
Mitochondrial gene divergence of Colombian Drosophila pseudoobscura   总被引:1,自引:0,他引:1  
Isolated populations of drosophila pseudoobscura, separated from North American populations by about 2,400 km, were found in Colombia in 1960. We compared for sequences of the small ribosomal RNA (srRNA) gene on the mitochondria between North American and Colombian D. pseudoobscura in order to clarify the age of the Colombian isolates. The North American populations were not genetically different from each other but were genetically different from the Colombian populations. The Mexican strains represent the area from which the Colombian founders might have come. The estimated net nucleotide divergence between Mexican and Colombian D. pseudoobscura indicates that the Colombian population is not an ancient lineage. Phylogenies using both distance and parsimony methodologies reinforced this conclusion. The Colombian samples group together with both methods but, according to the bootstrap analysis, not significantly. It appears that the populations have not been separated long enough for their DNA sequences to show much divergence.   相似文献   
75.

Background  

Various typing methods have been developed for Neisseria gonorrhoeae, but none provide the combination of discrimination, reproducibility, portability, and genetic inference that allows the analysis of all aspects of the epidemiology of this pathogen from a single data set. Multilocus sequence typing (MLST) has been used successfully to characterize the related organisms Neisseria meningitidis and Neisseria lactamica. Here, the same seven locus Neisseria scheme was used to characterize a diverse collection of N. gonorrhoeae isolates to investigate whether this method would allow differentiation among isolates, and to distinguish these three species.  相似文献   
76.
Complement proteins in blood recognize charged particles. The anionic phospholipid (aPL) cardiolipin binds both complement proteins C1q and factor H. C1q is an activator of the complement classical pathway, while factor H is an inhibitor of the alternative pathway. To examine opposing effects of C1q and factor H on complement activation by aPL, we surveyed C1q and factor H binding, and complement activation by aPL, either coated on microtitre plates or in liposomes. Both C1q and factor H bound to all aPL tested, and competed directly with each other for binding. All the aPL activated the complement classical pathway, but negligibly the alternative pathway, consistent with accepted roles of C1q and factor H. However, in this system, factor H, by competing directly with C1q for binding to aPL, acts as a direct regulator of the complement classical pathway. This regulatory mechanism is distinct from its action on the alternative pathway. Regulation of classical pathway activation by factor H was confirmed by measuring C4 activation by aPL in human sera in which the C1q:factor H molar ratio was adjusted over a wide range. Thus factor H, which is regarded as a down-regulator only of the alternative pathway, has a distinct role in downregulating activation of the classical complement pathway by aPL. A factor H homologue, β2-glycoprotein-1, also strongly inhibits C1q binding to cardiolipin. Recombinant globular domains of C1q A, B and C chains bound aPL similarly to native C1q, confirming that C1q binds aPL via its globular heads.  相似文献   
77.
Methylene blue was synthesized in 1877 and soon found application in medicine, staining for microscopy and as an industrial dye and pigment. An enormous literature has accumulated since its introduction. Early on, it was known that methylene blue could be degraded easily by demethylation; consequently, the purity of commercial samples often was low. Therefore, demethylation products, such as azures and methylene violet, also are considered here. The names and identity of the components, their varying modes of manufacture, analytical methods and their contribution to biological staining are discussed.  相似文献   
78.
We recently showed that the efficacy of an entomopathogenic nematode (EPN) as a biological control agent against a root pest could be enhanced through artificial selection. The EPN Heterorhabditis bacteriophora was selected for higher responsiveness towards (E)-β-caryophyllene (EβC), a sesquiterpene that is emitted by maize roots in response to feeding damage by the western corn rootworm (WCR). EβC is normally only weakly attractive to H. bacteriophora, which is one of the most infectious nematodes against WCR. By selecting H. bacteriophora to move more readily along a EβC gradient we obtained a strain that was almost twice more efficient in controlling WCR population in fields planted with an EβC-producing maize variety. However, artificial selection for one trait may come at a cost for other important traits such as infectiousness, establishment and/or persistence in the field. Indeed, infectiousness was slightly but significantly reduced in the selected strain. Yet, this apparent cost was largely compensated for by the higher responsiveness to the root signal. Here we show that the selection process had no negative effect on establishment and persistence of field-released EPN. This knowledge, combined with the previously reported results, attest to the feasibility of manipulating key traits to improve the efficacy of beneficial organisms.Key words: entomopathogenic nematodes, tritrophic interactions, artificial selection, biological control, Diabrotica virgifera virgifera, western corn rootworm, persistence, establishmentDiabrotica virgifera virgifera LeConte (Chrysomelidae: Coleptera, western corn rootworm, WCR) is a major well established pest of maize in the American Corn Belt and more recently also in Europe.1 The larval stages of this beetle can cause significant damages to maize roots, leading to reduction of plant growth, deficiencies in nutrient and water uptake, lodging, increased susceptibility to water stress and reduced grain yield.2 This combination of factors result in an estimated loss of one billion US dollars per year in the USA.3 The pest has been introduced in Europe in the early ''90s,4 and it is expected that at full establishment the costs resulting from WCR damages will be half a billion Euros.5 Several strategies are available to control this soil-dwelling pest, including crop rotation, pesticides and transgenic Bt maize, but WCR can readily evolve resistance to each of these methods.68 This is why efforts have been invested in biological control alternatives.Entomopathogenic nematodes (EPN) show great promise as biological agents against WCR.9 Root-produced volatiles appear to play an important role in the recruitment of EPN1013 and one such volatile, (E)-β-caryophyllene (EβC), has recently been identified for maize roots14 and was found to be an ideal below-ground alarm signal.15 EPN efficacy can be improved by exploiting the ability of WCR-damaged maize roots to emit the attractant.14 Further studies have shown the importance of choosing the right species of nematodes.16 Among the EPN species tested against WCR, Heterorhabditis bacteriophora has proven to be one of the most virulent nematodes,17 but it barely responds to EβC.16 We therefore recently selected H. bacteriophora for higher responsiveness to EβC.18 In the field, the selected strain exhibited better abilities to control WCR larvae, but logically only in maize plots with plants that emitted EβC. However, previous studies have shown that enhancing beneficial traits through selective breeding can incur costs and negatively alter other traits in the selected strain.19 For EPN such trade-offs after selective breeding have also been reported, for instance resulting in reduced storage stability20 or a lower capacity to kill their hosts.21 After selection for enhanced responsiveness to EβC response, we observed a small, but significant negative effect on infectiousness of the selected strains. However, this drawback was readily outweighed by the improved ability to locate hosts in the field.18Not only infectiousness is a crucial trait for the successful use of EPN in biological control: establishment and persistence in the field are of decisive importance as well. These traits vary with EPN species and are determined by biotic factors such as pathogens and predators22 or abiotic factors such as soil type,23 humidity,24 temperature25 or pH.24 But the main factor that is thought to determine long-term persistence in the field is the presence of available host insects.25 In field trials in Hungary, three EPN species, H. bacteriophora, H. megidis and Steinernema feltiae, were released to test their control potential against WCR. They all persisted at least as long WCR were present in soil, during the same year.26 There was no significant difference between the three species in the establishment or persistence. Yet, independent of timing of application, EPN populations dramatically decreased within five months after application. The authors26 propose that this short persistence is due to the absence of suitable alternative hosts in intensively cultivated crop fields in Europe.To determine if the selection for enhanced responsiveness to EβC went at a cost for establishment and persistence we compared these key traits for the original and the EβC-selected stains. Using a metal auger (2 cm diam.; 20 cm high), 310 soil samples were dug out either two days (establishment) or 28 days (persistence) after EPN application. The soil was placed in plastic boxes (4.5 cm diam.; 60 cm high) and as previously described26 Tenebrio molitor (Coleoptera: Tenebrionidae) larva was placed as bait in the boxes. Presence/absence of EPN was evaluated by visually checking T. molitor larvae for EPN infection. Soil samples from areas where no EPN were applied served as controls. No significant differences were found between the original and selected strain of H. bacteriophora strain (factor “strain”), neither in establishment after two days nor in persistence after 28 days (factor “time”) (Fig. 1, two-way ANOVA, Ftime1,35 = 2.937, p = 0.097; Fstrain2,35 = 10.359, p < 0.001; Ftime × strain2,35 = 1.202, p = 0.315, statistical differences within factors were calculated using a Bonferoni post-hoc test). Hence, the selection of H. bacteriophora for a better response to EβC had no consequence for how the nematodes settled in the experimental fields. Future efforts to improve the effectiveness H. bacteriophora against WCR might also include selection for increased persistence in soil. This would allow lower application rates and could provide growers with an affordable and efficient control strategy against this voracious pest.Open in a separate windowFigure 1Establishment and persistence of the original and a selected strain of H. bacteriophora. The selected strain (squares) established and persisted as well as the original strain (diamonds). The triangles represent control samples from plots where no nematodes were released. Establishment (after two days) and persistence (after 28 days) was equal for both strains. Moreover, the number of soil samples containing EPN after 28 days was not significantly lower than after 2 days, independently of treatment. A few nematodes were detected in the control samples but again no differences over time were detected. Error bars indicate the SEM. Different lower-case letters indicate statistical differences within establishment (after 2 days) or persistence (after 28 days) (p <0.05).So far, manipulation of tritrophic systems in order to improve biological control has been largely theoretical.2729 We show here that for EPN this approach is realistic and that their responsiveness to root-produced foraging signals can be enhanced without significant costs for other relevant traits. It has also been shown that the emissions of the signals by the plants can be enhanced.30 Combining these strategies opens new perspectives for the development of ecologically sound strategies in pest management.  相似文献   
79.

Background  

Quorum sensing is a term describing a bacterial communication system mediated by the production and recognition of small signaling molecules. The LuxS enzyme, catalyzing the synthesis of AI-2, is conserved in a wide diversity of bacteria. AI-2 has therefore been suggested as an interspecies quorum sensing signal. To investigate the role of endogenous AI-2 in protein expression of the Gram-negative pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), we performed a 2D-DIGE proteomics experiment comparing total protein extract of wildtype S. Typhimurium with that of a luxS mutant, unable to produce AI-2.  相似文献   
80.

Background  

Volatiles emitted by herbivore-infested plants are highly attractive to parasitoids and therefore have been proposed to be part of an indirect plant defense strategy. However, this proposed function of the plant-provided signals remains controversial, and it is unclear how specific and reliable the signals are under natural conditions with simultaneous feeding by multiple herbivores. Phloem feeders in particular are assumed to interfere with plant defense responses. Therefore, we investigated how attack by the piercing-sucking cicadellid Euscelidius variegatus influences signaling by maize plants in response to the chewing herbivore Spodoptera littoralis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号