首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   538篇
  免费   6篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   22篇
  2012年   19篇
  2011年   26篇
  2010年   36篇
  2009年   35篇
  2008年   35篇
  2007年   42篇
  2006年   24篇
  2005年   23篇
  2004年   11篇
  2003年   9篇
  2002年   5篇
  2001年   6篇
  2000年   7篇
  1999年   7篇
  1998年   11篇
  1997年   14篇
  1996年   17篇
  1995年   12篇
  1994年   14篇
  1993年   11篇
  1992年   11篇
  1991年   12篇
  1990年   11篇
  1989年   10篇
  1988年   8篇
  1987年   5篇
  1986年   11篇
  1985年   8篇
  1984年   6篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1978年   5篇
  1976年   3篇
  1975年   4篇
  1974年   3篇
  1973年   3篇
  1971年   2篇
  1968年   2篇
  1957年   5篇
  1956年   3篇
  1951年   2篇
  1938年   3篇
  1929年   3篇
排序方式: 共有544条查询结果,搜索用时 15 毫秒
121.
There is increasing consensus that the global climate will continue to warm over the next century. The biodiversity-rich Amazon forest is a region of growing concern because many global climate model (GCM) scenarios of climate change forecast reduced precipitation and, in some cases, coupled vegetation models predict dieback of the forest. To date, fires have generally been spatially co-located with road networks and associated human land use because almost all fires in this region are anthropogenic in origin. Climate change, if severe enough, could alter this situation, potentially changing the fire regime to one of increased fire frequency and severity for vast portions of the Amazon forest. High moisture contents and dense canopies have historically made Amazonian forests extremely resistant to fire spread. Climate will affect the fire situation in the Amazon directly, through changes in temperature and precipitation, and indirectly, through climate-forced changes in vegetation composition and structure. The frequency of drought will be a prime determinant of both how often forest fires occur and how extensive they become. Fire risk management needs to take into account landscape configuration, land cover types and forest disturbance history as well as climate and weather. Maintaining large blocks of unsettled forest is critical for managing landscape level fire in the Amazon. The Amazon has resisted previous climate changes and should adapt to future climates as well if landscapes can be managed to maintain natural fire regimes in the majority of forest remnants.  相似文献   
122.
123.
A recent workshop held at the Arizona State University Center for Social Dynamics and Complexity gathered over 50 prominent researchers from around the globe to discuss the development of genomic resources for several ant species. Ants play crucial roles in many ecological niches and the sequencing of several ant genomes promises to elucidate topics ranging from the genetic basis for social complexity, longevity and behaviour to systems biology and the identification of novel antimicrobial compounds. Unlike other species, most ant genomes are being generated by individual labs and small collaborations without the annotation and computational resources that support prominent model organism genome databases such those for the fruitfly and roundworm. Attendees summarized their current progress and future plans for several ant genomes and discussed how best to coordinate the analysis and annotation of ant sequences to benefit the broad research interests of the social insect community.  相似文献   
124.
Identifying patterns of larval dispersal within marine metapopulations is vital for effective fisheries management, appropriate marine reserve design, and conservation efforts. We employed genetic markers (microsatellites) to determine dispersal patterns in bicolour damselfish (Pomacentridae: Stegastes partitus). Tissue samples of 751 fish were collected in 2004 and 2005 from 11 sites encompassing the Exuma Sound, Bahamas. Bayesian parentage analysis identified two parent–offspring pairs, which is remarkable given the large population sizes and 28 day pelagic larval duration of bicolour damselfish. The two parent–offspring pairs directly documented self‐recruitment at the two northern‐most sites, one of which is a long‐established marine reserve. Principal coordinates analyses of pair‐wise relatedness values further indicated that self‐recruitment was common in all sampled populations. Nevertheless, measures of genetic differentiation (FST) and results from assignment methods suggested high levels of gene flow among populations. Comparisons of heterozygosity and relatedness among samples of adults and recruits indicated spatially and temporally independent sweepstakes events, whereby only a subset of adults successfully contribute to subsequent generations. These results indicate that self‐recruitment and sweepstakes reproduction are the predominant, ecologically‐relevant processes that shape patterns of larval dispersal in this system.  相似文献   
125.
Preen wax is important for plumage maintenance and other functions. Its chemical composition is complex, and separating and quantifying its components, commonly by gas chromatography (GC), can be challenging. We present a simple analytical system consisting of thin‐layer chromatography/flame ionization detection (TLC‐FID) using a solvent system of 100% toluene to analyse the complex compound classes present in preen wax. We used GC and TLC‐FID to investigate the effects of migratory status, diet and captivity on the preen wax composition of White‐throated Sparrows Zonotrichia albicollis, and to measure the quantity of preen wax on the head, primary and tail feathers. White‐throated Sparrows produced preen wax containing only monoesters regardless of migratory state. The monoesters contained several isomers consisting of homologous series of fatty alcohols (C10–C20) and fatty acids (C13–C19) esterified together in different combinations to form monoesters with total carbon numbers ranging from C23 to C38. Weighted average monoester carbon number was greater in captive birds than in wild birds and was greater in captives fed a formulated diet enriched with sesame oil than in birds fed the same diet enriched with fish oil. Captivity and migratory state also affected the complexity of the mixture of monoesters. There was significantly more preen wax on head feathers compared with primary and tail feathers. We suggest that among its many functions, preen wax may play a role in drag reduction by affecting the physical properties of feathers, and/or the fluid flow at their surfaces.  相似文献   
126.
1. Manipulative field studies were carried out to evaluate the foliage age preference–performance relationship for an extreme generalist herbivore, the whitemarked tussock moth (Orygia leucostigma Smith) (Lepidoptera: Lymantriidae), within balsam fir [Abies balsamea (L.) Mill]. 2. Field surveys indicated that early instar caterpillars fed almost exclusively on young (i.e. current‐year) foliage, whereas late instars caterpillars fed on both young and mature (i.e. 1‐ and 2‐year‐old) foliage. 3. Survival of early instar caterpillars was highest in treatments where current‐year and/or 1‐year old foliage were available, but decreased significantly on older foliage. In contrast, late instar caterpillars had the highest survival when allowed to feed on all age classes of foliage, whereas potential fecundity was highest for late instars that fed on young foliage. 4. Overall, caterpillars had 32–65% higher fitness when able to feed on all rather than just one age class of foliage. 5. These results support both the ‘complementary diet' hypothesis, which states that dietary mixing of different‐aged foliage can increase nutrient uptake and/or dilute harmful secondary plant chemicals, and the ‘ontogeny’ hypothesis, which attributes changes in diet to changes in the nutritional needs and/or tolerance to plant defences of juvenile insects as they develop.  相似文献   
127.
128.
Historical sea levels have been influential in shaping the phylogeography of freshwater‐limited taxa via palaeodrainage and palaeoshoreline connections. In this study, we demonstrate an approach to phylogeographic analysis incorporating historical sea‐level information in a nested clade phylogeographic analysis (NCPA) framework, using burrowing freshwater crayfish as the model organism. Our study area focuses on the Bass Strait region of southeastern Australia, which is marine region encompassing a shallow seabed that has emerged as a land bridge during glacial cycles connecting mainland Australia and Tasmania. Bathymetric data were analysed using Geographical Information Systems (GIS) to delineate a palaeodrainage model when the palaeocoastline was 150 m below present‐day sea level. Such sea levels occurred at least twice in the past 500 000 years, perhaps more often or of larger magnitude within the last 10 million years, linking Victoria and Tasmania. Inter‐locality distance measures confined to the palaeodrainage network were incorporated into an NCPA of crayfish (Engaeus sericatus Clark 1936) mitochondrial 16S rDNA haplotypes. The results were then compared to NCPAs using present‐day river drainages and traditional great‐circle distance measures. NCPA inferences were cross‐examined using frequentist and Bayesian procedures in the context of geomorphological and historical sea‐level data. We found distribution of present‐day genetic variation in E. sericatus to be partly explained not only by connectivity through palaeodrainages but also via present‐day drainages or overland (great circle) routes. We recommend that future studies consider all three of these distance measures, especially for studies of coastally distributed species.  相似文献   
129.
In ectothermic species, females often produce larger eggs in colder environments. Models based on energetic constraints suggest that this pattern is an adaptation to compensate for the slower growth of offspring in the cold. Yet, females in cold environments also tend to be larger than females in warm environments. Consequently, thermal clines in egg size could be caused by pelvic constraints, which stem from the inability of large eggs to pass through a small pelvic aperture. Models based on energetic constraints and models based on pelvic constraints predict similar relationships between maternal size and egg size. However, pelvic constraints should produce these relationships both within and among populations, whereas energetic constraints would not necessarily do so. If pelvic constraints are important, we might also expect small females to compensate by producing eggs that are relatively rich in lipids (i.e. high energy density). The present study aimed to assess whether energetic or pelvic constraints generate geographical variation in egg size of the lizard Sceloporus undulatus . Pelvic width is very highly correlated with body length in S. undulatus , making maternal size a suitable measure of pelvic constraint. Although maternal size and egg mass (dry and wet) covaried among populations, these variables were generally not related within populations. Energetic density of eggs tended to increase with decreasing egg mass (dry and wet), but this relationship was strongest in populations where no relationship between maternal size and egg mass was observed. Our results do not support the pelvic constraint model and thus indicate energetic constraints play a greater role in generating geographical variation in egg size.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 513–521.  相似文献   
130.
Conventional gap‐filling procedures for eddy covariance (EC) data are limited to calculating ecosystem respiration (RE) and gross ecosystem productivity (PG) as well as missing values of net ecosystem productivity (FNEP). We develop additional postprocessing steps that estimate net primary productivity (PN), autotrophic (Ra), and heterotrophic respiration (Rh). This is based on conservation of mass of carbon (C), Monte Carlo (MC) simulation, and three ratios: C use efficiency (CUE, PN to PG), Ra to RE, and FNEP to RE. This procedure, along with the estimation of FNEP, RE, and PG, was applied to a Douglas‐fir dominated chronosequence on Vancouver Island, British Columbia, Canada. The EC data set consists of 17 site years from three sites: initiation (HDF00), pole/sapling (HDF88), and near mature (DF49), with stand ages from 1 to 56 years. Analysis focuses on annual C flux totals and C balance ratios as a function of stand age, assuming a rotation age of 56 years. All six C balance terms generally increased with stand age. Average annual PN by stand was 213, 750, and 1261 g C m−2 yr−1 for HDF00, HDF88, and DF49, respectively. The canopy compensation point, the year when the chronosequence switched from a source to a sink of C, occurred at stand age ca. 20 years. HDF00 and HDF88 were strong and moderate sources (FNEP=−581 and −138 g C m−2 yr−1), respectively, while DF49 was a moderate sink (FNEP=294 g C m−2 yr−1) for C. Differences between sites were greater than interannual variation (IAV) within sites and highlighted the importance of age‐related effects in C cycling. The validity of the approach is discussed using a sensitivity analysis, a comparison with growth and yield estimates from the same chronosequence, and an intercomparison with other chronosequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号