首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   603篇
  免费   9篇
  612篇
  2015年   4篇
  2014年   6篇
  2013年   22篇
  2012年   20篇
  2011年   27篇
  2010年   37篇
  2009年   40篇
  2008年   37篇
  2007年   43篇
  2006年   25篇
  2005年   26篇
  2004年   11篇
  2003年   11篇
  2002年   5篇
  2001年   6篇
  2000年   7篇
  1999年   6篇
  1998年   12篇
  1997年   16篇
  1996年   18篇
  1995年   13篇
  1994年   18篇
  1993年   13篇
  1992年   14篇
  1991年   13篇
  1990年   12篇
  1989年   11篇
  1988年   10篇
  1987年   8篇
  1986年   13篇
  1985年   9篇
  1984年   6篇
  1983年   3篇
  1982年   5篇
  1981年   5篇
  1980年   4篇
  1979年   6篇
  1978年   6篇
  1976年   4篇
  1975年   4篇
  1973年   3篇
  1959年   2篇
  1958年   2篇
  1957年   3篇
  1956年   6篇
  1955年   5篇
  1954年   4篇
  1953年   5篇
  1952年   4篇
  1948年   2篇
排序方式: 共有612条查询结果,搜索用时 0 毫秒
81.
We investigated mean residence time (MRT) for soil organic carbon (SOC) sampled from paired hardwood and pine forests located along a 22 °C mean annual temperature (MAT) gradient in North America. We used acid hydrolysis fractionation, radiocarbon analyses, long-term laboratory incubations (525-d), and a three-pool model to describe the size and kinetics of the acid insoluble C (AIC), active and slow SOC fractions in soil. We found that active SOC was 2 ± 0.2% (mean ± SE) of total SOC, with an MRT of 33 ± 6 days that decreased strongly with increasing MAT. In contrast, MRT for slow SOC and AIC (70 ± 6% and 27 ± 6% of total SOC, respectively) ranged from decades to thousands of years, and neither was significantly related to MAT. The accumulation of AIC (as a percent of total SOC) was greater in hardwood than pine stands (36% and 21%, respectively) although the MRT for AIC was longer in pine stands. Based on these results, we suggest that the responsiveness of most SOC decomposition in upland forests to global warming will be less than currently modeled, but any shifts in vegetation from hardwood to pine may alter the size and MRT of SOC fractions.  相似文献   
82.
The availability of expressed sequence data derived from gene discovery programs enables mining for simple sequence repeats (SSR), providing useful genetic markers for crop improvement. These markers are inexpensive, require minimal labour to produce and can frequently be associated with functionally annotated genes. This study presents the development and characterization of 16 expressed sequence tags (EST)‐SSR markers from Brassica juncea and their cross‐amplification across Brassica species. Sixteen primer pairs were assessed for polymorphism in all genomes of the diploid and amphidiploid Brassica species. The markers show reliable amplification, considerable polymorphism and high transferability across species, demonstrating the utility of EST‐SSRs for genetic analysis of brassicas.  相似文献   
83.
Bracken [ Pteridium aquilinum (L.) Kuhn] is a cosmopolitan species and is a noxious weed in many areas. Because of its abundance, particularly in Britain, bracken affords an ideal system for investigating various aspects of population genetics and evolution. High mobility of dispersal units (spores) suggests that rates of gene flow among distant populations should be high. Gene flow is a major evolutionary force that influences the genetic structure of populations. To examine the effects of gene flow on population heterogeneity and population substructuring in bracken, starch gel electrophoresis of enzymes was used to provide the necessary genetic database. Allele frequency data at 21 loci were obtained for seven British populations, one Majorcan and one from the eastern United States. A model was employed to estimate the amount of gene flow ( Nm ) at several levels. Gene flow among British populations was extremely high ( Nm = 36.51), one of the highest estimates reported for plants. Among eight European populations gene flow was lower (but still considered high) at Nm = 2.47. Trans-Atlantic gene flow was low ( Nm = 0.0926).
F -statistics were used to assess population heterogeneity and substructuring. The data indicate that, compared with other species, there is very little genetic differentiation among British populations of bracken. Indeed, it appears that the whole island is behaving as a single randommating population. This result is consistent with high levels of gene flow. Only one population (on the Isle of Arran) showed statistically significant genetic substructuring. Habitat heterogeneity on the island and age structure are hypothesized as possible causes of this result.
The data reported here support previous studies demonstrating that bracken is genetically polymorphic and is an outcrossing species.  相似文献   
84.
During deposition of late Archean–early Palaeoproterozoic Precambrian banded iron formations (BIFs) the downward flux of ferric hydroxide (Fe(OH)3) and phytoplankton biomass should have facilitated microbial Fe(III) reduction. However, quantifying the significance of such a metabolic pathway in the Precambrian is extremely difficult, considering the post‐depositional alteration of the rocks and the lack of ideal modern analogues. Consequently, we have very few constraints on the Fe cycle at that time, namely (i) the concentration of dissolved Fe(II) in the ocean waters; (ii) by what mechanisms Fe(II) was oxidized (chemical, photochemical or biological, the latter using either O2 or light); (iii) where the ferric hydroxide was precipitated (over the shelf vs. open ocean); (iv) the amount of phytoplankton biomass, which relates to the nutrient status of the surface waters; (v) the relative importance of Fe(III) reduction vs. the other types of metabolic pathways utilized by sea floor microbial communities; and (vi) the proportion of primary vs. diagenetic Fe(II) in BIF. Furthermore, although estimates can be made regarding the quantity of reducing equivalents necessary to account for the diagenetic Fe(II) component in Fe‐rich BIF layers, those same estimates do not offer any insights into the magnitude of Fe(III) actually generated within the water column, and hence, the efficiency of Fe and C recycling prior to burial. Accordingly, in this study, we have attempted to model the ancient Fe cycle, based simply on conservative experimental rates of photosynthetic Fe(II) oxidation in the euphotic zone. We estimate here that under ideal growth conditions, as much as 70% of the biologically formed Fe(III) could have been recycled back into the water column via fermentation and organic carbon oxidation coupled to microbial Fe(III) reduction. By comparing the potential amount of biomass generated phototrophically with the reducing equivalents required for Fe(III) reduction and magnetite formation, we also hypothesize that another anaerobic metabolic pathway might have been utilized in the surface sediment to oxidize the fermentation by‐products. Based on the premise that the deep ocean waters were anoxic, this role could have been fulfilled by methanogens, and maybe even methanotrophs that employed Fe(III) reduction.  相似文献   
85.
86.
Alterations in forest productivity and changes in the relative proportion of above‐ and belowground biomass may have nonlinear effects on soil organic matter (SOM) storage. To study the influence of plant litter inputs on SOM accumulation, the Detritus Input Removal and Transfer (DIRT) Experiment continuously alters above‐ and belowground plant inputs to soil by a combination of trenching, screening, and litter addition. Here, we used biogeochemical indicators [i.e., cupric oxide extractable lignin‐derived phenols and suberin/cutin‐derived substituted fatty acids (SFA)] to identify the dominant sources of plant biopolymers in SOM and various measures [i.e., soil density fractionation, laboratory incubation, and radiocarbon‐based mean residence time (MRT)] to assess the stability of SOM in two contrasting forests within the DIRT Experiment: an aggrading deciduous forest and an old‐growth coniferous forest. In the deciduous forest, removal of both above‐ and belowground inputs increased the total amount of SFA over threefold compared with the control, and shifted the SFA signature towards a root‐dominated source. Concurrently, light fraction MRT increased by 101 years and C mineralization during incubation decreased compared with the control. Together, these data suggest that root‐derived aliphatic compounds are a source of SOM with greater relative stability than leaf inputs at this site. In the coniferous forest, roots were an important source of soil lignin‐derived phenols but needle‐derived, rather than root‐derived, aliphatic compounds were preferentially preserved in soil. Fresh wood additions elevated the amount of soil C recovered as light fraction material but also elevated mineralization during incubation compared with other DIRT treatments, suggesting that not all of the added soil C is directly stabilized. Aboveground needle litter additions, which are more N‐rich than wood debris, resulted in accelerated mineralization of previously stored soil carbon. In summary, our work demonstrates that the dominant plant sources of SOM differed substantially between forest types. Furthermore, inputs to and losses from soil C pools likely will not be altered uniformly by changes in litter input rates.  相似文献   
87.
Abstract: Fishers (Martes pennanti) were extirpated from much of southern Ontario, Canada, prior to the 1950s. We hypothesised that the recent recolonization of this area originated from an expansion of the population in Algonquin Provincial Park, which historically served as a refuge for fishers. To test this hypothesis, we created a sampling lattice to encompass Algonquin and the surrounding area, and we collected contemporaneous DNA samples. We sampled fishers from each of 35 sites and genotyped them at 16 microsatellite loci. Using a Bayesian assignment approach, with no a priori geographic information, we inferred 5 discrete genetic populations and used genetic population assignment as a means to cluster sites together. We concluded that the Algonquin Park fisher population has not been a substantial source for recolonization and expansion, which has instead occurred from a number of remnant populations within Ontario, Quebec, and most recently from the Adirondacks in New York, USA. The genetic structure among sampling sites across the entire area revealed a pattern of isolation-by-distance (IBD). However, an examination of the distribution of genetic structure (FST/1- FST) at different distances showed higher rates of gene flow than predicted under a strict IBD model at small distances (40 km) within clusters and at larger distances up to 100 km among clusters. This pattern of genetic structure suggests increased migration and gene flow among expanding reproductive fronts.  相似文献   
88.
New crystalline structures have been observed in argon ion‐milled conodont elements from a diverse suite of Ordovician taxa (‘Cordylodus robustus’, Drepanoistodus suberectus, Panderodus gracilis, Plectodina? sp., Aphelognathus sp., Periodon aculeatus), using transmission electron microscopy (TEM). Electron diffraction patterns of albid tissue reveal that the component crystals are extraordinarily large, in the order of hundred(s) of microns. These large albid crystals show typical cancellate porosity, although a distinctly lamellar structure has also been observed within a large albid crystal positioned between hyaline lamellar and cancellate albid tissues. There is a distinct absence of ‘interlamellar space’ within all hyaline tissues examined, which are characterized by a polycrystalline matrix of micron‐scale elongate crystals that are both strongly aligned and tightly bound within a broader lamellar structure. Optical opacity, caused by light scattering within large (≥ 0.5 µm) pores, is also a feature of both albid and polycrystalline lamellar crown tissues. Accordingly, conodont hard tissues are differentiated by crystal size and shape, as well as inter‐ and intracrystalline porosity. These new observations highlight the structural complexities of conodont histologies and the need for more comprehensive investigations particularly of transitional crown tissues, which are not well defined by terms typically used in the literature. Their histological structures are interpreted to be a product of in vivo crystallization and thus provide new insights into the relative porosity, permeability, and inherent integrity of the tissues as well as their growth relationships. Accordingly, these data not only have implications for earlier histological and palaeobiological interpretations of conodont hard tissues but are also fundamental in determining their chemical integrity, which is crucial for characterizing palaeoseawater composition and palaeoenvironmental change. The potential for conodont apatite to retain primary chemical information depends on crystal size and permeability, so the large albid crystal domains are consistent with parallel geochemical studies that suggest that cancellate albid crown is more resistant to diagenetic modification.  相似文献   
89.
ABSTRACT Delineating populations is critical for understanding population dynamics and managing habitats. Our objective was to delineate subpopulations of migratory female white-tailed deer (Odocoileus virginianus) in the central Black Hills, South Dakota and Wyoming, USA, on summer and winter ranges. We used fuzzy classification to assign radiocollared deer to subpopulations based on spatial location, characterized subpopulations by trapping sites, and explored relationships among survival of subpopulations and habitat variables. In winter, Kaplan-Meier estimates for subpopulations indicated 2 groups: high (S = 0.991 ± 0.005 [x̄ ± SE]) and low (S = 0.968 ± 0.007) weekly survivorship. Survivorship increased with basal area per hectare of trees, average diameter at breast height of trees, percent cover of slash, and total point-center quarter distance of trees. Cover of grass and forbs were less for the high survivorship than the lower survivorship group. In summer, deer were spaced apart with mixed associations among subpopulations. Habitat manipulations that promote or maintain large trees (i.e., basal area = 14.8 m2/ha and average dbh of trees = 8.3 cm) would seem to improve adult survival of deer in winter.  相似文献   
90.
The quantification of greenhouse gas sources and sinks is important to understanding the impact of climate change. Methane (CH4) is a potent greenhouse gas, which, on a global scale, is released largely as a product of anaerobic microbial decomposition and predominantly from wetlands. A zone of intense CH4 production just below the water table is thought to contribute significantly to the overall flux from peat bogs. We describe the use of membrane inlet quadrupole mass spectrometry (QMS) to confirm the existence of bubbles, their gaseous concentrations and their localization at a fine spatial resolution within intact peat cores. We use the distribution of the noble gas argon (Ar) and the distinct QMS responses to dissolved and gaseous (bubble) phases to identify trapped bubbles with a resolution of 0.6 mm. Bubbles with CH4 concentrations of up to 20 kPa were widely distributed in the upper 300 mm of the cores with ~11% of all profiles comprising bubbles. The dissolved concentrations responsible for the bubbles were on average 83±80 μm , indicating lower concentrations relative to other QMS studies. We suggest that if the distinction between dissolved and gaseous phases is not made in studies of CH4 within peat profiles then the prominence of bubbles is likely to result in overestimates of dissolved CH4 concentrations. Fluxes of CH4 from peat as a result of drawdown or other perturbation are likely to be large, rapid and short lived because of bubble burst, and also larger than from peat without bubbles. We suggest that the dynamics of fluxes need to be modelled taking into account both gaseous and dissolved phases. Estimates of potential fluxes that assume CH4 is dissolved are likely to overestimate fluxes if the gaseous phase has not been taken into account.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号