首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251篇
  免费   6篇
  2016年   4篇
  2015年   4篇
  2013年   8篇
  2012年   4篇
  2011年   9篇
  2010年   13篇
  2009年   12篇
  2008年   9篇
  2007年   12篇
  2006年   11篇
  2005年   9篇
  2004年   5篇
  2003年   6篇
  2001年   6篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   9篇
  1994年   3篇
  1993年   3篇
  1992年   6篇
  1991年   8篇
  1990年   3篇
  1989年   4篇
  1988年   8篇
  1987年   5篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   5篇
  1981年   8篇
  1980年   10篇
  1979年   4篇
  1978年   8篇
  1977年   4篇
  1976年   5篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1966年   1篇
  1958年   1篇
  1957年   1篇
  1956年   2篇
  1955年   1篇
  1954年   1篇
排序方式: 共有257条查询结果,搜索用时 187 毫秒
111.
Abstract: Callistoe vincei Babot et al., 2002 is a Paleogene borhyaenoid known from exceptionally complete postcranial elements, which provides rare information about the anatomy and evolutionary history of metatherian predators during the South American Cenozoic. The axial skeleton of Callistoe is characterized by the peculiar transverse processes of the cervical vertebrae emphasizing lateral instead of sagittal traction. There is no clavicle and eighteen thoracolumbar vertebrae, of which only five are lumbars. The shoulder and elbow joints suggest movements restricted to parasagittal flexion/extension that are consistent with primarily terrestrial locomotion, as is also emphasized in Borhyaena tuberata and Lycopsis longirostrus. On the manus, the pollex is not reduced and the ungual phalanges indicate very long claws, similar to those observed in some extant digging taxa. This feature is unique to C. vincei among borhyaenoids. The knee joint is characterized by the presence of ossified patellae but shallow femoral trochleae. This joint suggests that the leg was nearly parasagittal, a position also inferred for Borhyaena. The astragalus shape is consistent with parasagittal flexion/extension, as in all Miocene–Pliocene borhyaenoids. The hind foot is characterized by reduced claws in comparison with the manus as well as the slenderness of the first and fifth digits, another peculiarity of C. vincei. The habitat of Callistoe was a temperate humid forest and according to the known fossil record, Callistoe was the largest mammalian predator of its time, sharing the predator ecological niche with crocodiles.  相似文献   
112.
1. Many rivers and streams experience pronounced ice dynamics caused by the formation of anchor and frazil ice, leading to flooding and disturbance of riparian and aquatic communities. However, the effects of dynamic ice conditions on riverine biota are little known. 2. We studied the formation of anchor ice in natural streams over 2 years and assessed the effects of anchor ice on riparian vegetation by comparing sites with frequent or abundant and little or no anchor ice formation. We also studied the direct impact of ice on riparian plants by experimentally creating ice in the riparian zone over three winters and by exposing plants of different life forms to ?18 °C cold ice in the laboratory. 3. Riparian species richness per 1‐m2 plot was higher at sites affected by anchor ice than at sites where anchor ice was absent or rare, whereas dominance was lower, suggesting that disturbance by ice enhances species richness. Species composition was more homogenous among plots at anchor ice sites. By experimentally creating riparian ice, we corroborated the comparative results, with species richness increasing in ice‐treated plots compared to controls, irrespective of whether the sites showed natural anchor ice. 4. Because of human alterations of running waters, the natural effects of river ice on stream hydrology, geomorphology and ecology are little known. Global warming in northern streams is expected to lead to more dynamic ice conditions, offering new challenges for aquatic organisms and river management. Our results should stimulate new research, contributing to a better understanding of ecosystem function during winter.  相似文献   
113.
Da Silva, A.‐C., Kershaw, S. & Boulvain, F. 2011: Sedimentology and stromatoporoid palaeoecology of Frasnian (Upper Devonian) carbonate mounds in southern Belgium. Lethaia, Vol. 44, pp. 255–274. Stromatoporoids are the most abundant large skeletal organisms in middle Frasnian carbonate mound environments of southern Belgium. They occur in environments ranging from flank and off‐mound, mound core, shallow mound and restricted mound. A detailed log and comprehensive sampling of stromatoporoids in a single section cutting through all middle Frasnian mound levels in La Boverie–Rochefort Quarry, near Rochefort and Dinant reveals a stromatoporoid assemblage comprising 10 genera; 472 samples, containing an overall total of 3079 stromatoporoids (including complete and fragmented specimens) have been studied. The following list gives abundance using numbers of specimens and areas of total stromatoporoid area on outcrop surfaces (% number; % area in cm2): Actinostroma (0.4; 9.2), Amphipora (15.5; 1.7), Atelodictyon (0.2; 4.4), Clathrocoilona (0.3; 0.5), Euryamphipora (13.7; 0.7), Idiostroma (2; 1.9), Salairella (1.2; 9.6), branching Stachyodes (43.2; 59.1), laminar Stachyodes australe (1.9; 1.3), Stictostroma (4.8; 13.1) and Trupetostroma (0.2; 0.8), showing that Stachyodes is approximately half of the total assemblage. Deeper environments contain more abundant low profile forms, shallow water facies contain more domical and bulbous forms; branching forms are ubiquitous. Low profile stromatoporoids are likely to have been important sediment stabilizers that may have led to expansion of the carbonate factory, and they may have therefore contributed to the structural building of the mounds. Stromatoporoid‐coral intergrowths are observed in only Stictostroma suggesting that there is a close biological relationship between them; however, stromatoporoid skeletons in almost all cases appear to be unaffected by the presence of intergrown corals, suggesting they were commensals. □Frasnian, Late Devonian, mounds, palaeoecology, stromatoporoid.  相似文献   
114.
An improved method of cell fractionation allowed the extraction of soluble (sNR) and membrane-associated (mNR) forms of nitrate reductase (NR) from a dinoflagellate, even though in previous studies only mNR had been found in these algae. Both activities were assayed in cell-free extracts of Peridinium gatunense from Lake Kinneret, Israel, after disruption of the cells and differential centrifugation. In the cultures used, sNR showed much higher NO3-reducing activity. Only a low proportion, 2.5–3% of NR activity, was found to be associated with mNR. Moreover, mNR comprised two forms as indicated by protein solubilization: a tightly membrane-bound and a more weakly attached NR. Ascorbate inhibited all NR activities, but that of mNR recovered after its removal. Polyvinyl pyrrolidone (PVP) and DTT also diminished sNR and mNR activities. For both enzymes, pH optima (7.65) and temperature optima (13–25°C) were similar, and agreed with those for optimum growth of P. gatunense both in culture and in the lake. The most efficient electron donor was NADH, though NADPH sustained low NR activities. Carboxylic anions such as succinate and malate did not support any reduction of NO3, nor did they cause any stimulation of sNR or mNR activities. Both forms of NR showed a high affinity for their substrates: K m was c. 10 μM for NO3 and c. 5 μM for NADH. The high efficiency of NO3 assimilation by Peridinium seems to be limited mainly by energy under otherwise optimal nutritional conditions and, at low nitrate concentrations, the low K m may be one of the main reasons for the high competitivity of this alga in Lake Kinneret.  相似文献   
115.
Fungal community responses to precipitation   总被引:2,自引:0,他引:2  
Understanding how fungal communities are affected by precipitation is an essential aspect of predicting soil functional responses to future climate change and the consequences of those responses for the soil carbon cycle. We tracked fungal abundance, fungal community composition, and soil carbon across 4 years in long‐term field manipulations of rainfall in northern California. Fungi responded directly to rainfall levels, with more abundant, diverse, and consistent communities predominating under drought conditions, and less abundant, less diverse, and more variable communities emerging during wetter periods and in rain‐addition treatments. Soil carbon storage itself did not vary with rainfall amendments, but increased decomposition rates foreshadow longer‐term losses of soil carbon under conditions of extended seasonal rainfall. The repeated recovery of fungal diversity and abundance during periodic drought events suggests that species with a wide range of environmental tolerances coexist in this community, consistent with a storage effect in soil fungi. Increased diversity during dry periods further suggests that drought stress moderates competition among fungal taxa. Based on the responses observed here, we suggest that there may be a relationship between the timescale at which soil microbial communities experience natural environmental fluctuations and their ability to respond to future environmental change.  相似文献   
116.
117.
Chimerism following fusion in a clonal ascidian (Urochordata)   总被引:2,自引:0,他引:2  
Many marine invertebrates bud vegetatively to produce a modular colony of individuals derived from a single zygote. Fusion of different colonies to produce a genetically composite entity (a chimera) is known from experiments on sponges, hydroids, corals, bryozoans and ascidians – groups which together dominate sessile faunas on marine hard substrates. Random amplified polymorphic DNA–polymerase chain reaction (RAPD–PCR) analysis was applied to individual modules (zooids) dissected from colonies of a colonial ascidian, Diplosoma listerianum (Milne Edwards), to investigate the presence and extent of chimerism. The technique revealed chimerism in wild material. In total, 288 colonies from eight different natural populations were analysed. Chimeric colonies were present in all populations, at frequencies of up to 61%, with up to six different genotypes present in some colonies. Zooids of different genetic origin often intermingled within a chimeric colony to produce a zooidal mosaic. Although fusion of colonies has been observed directly in the laboratory, an unknown proportion of the chimerism detected in wild populations might have arisen through somatic mutation. To assess this possibility, tissue of 12 clones in culture was sampled repeatedly over a period of 3 years and subjected to RAPD–PCR analysis. RAPD banding patterns were generally very stable; the changes noted mostly involved minor bands that would not, on their own, have been taken as evidence for chimerism under the conservative criteria adopted for the study of wild populations. It was concluded that a large proportion of natural chimerism is attributable to colony fusion.  © 2003 The Linnean Society of London. Biological Journal of the Linnean Society , 2003, 79 , 183–192.  相似文献   
118.
119.
120.
1. Numerous cladistic analyses have converged: termites are a monophyletic clade embedded within the paraphyletic cockroaches, and sister group to the biparental, wood‐feeding cockroach Cryptocercus. The latter is, therefore, an appropriate model for testing assumptions regarding early termite evolution. 2. The ground plan of the termite ancestor is reviewed based on shared characters of ecology, life history, and behaviour in Cryptocercus and incipient termite colonies, and includes two levels of dependence: a reliance of all individuals on gut microbiota, and dependence of early instars on parental care. Both these conditions co‐evolved with parent‐to‐offspring proctodeal trophallaxis. 3. The termite ancestor lived in a single log serving as food and nest. This ‘one‐piece’ nesting ecology prioritises nitrogen conservation and strongly influences interacting social, nutritional, and microbial environments. Each of these environments individually and in combination profoundly affect cockroach development. 4. Proctodeal trophallaxis integrates the social, nutritional, and microbial environments. A change in trophallactic behaviour, from parental to alloparental, can, therefore, shift developmental trajectories, ultimately adding a third level of dependence. The death of gut protists during the host molting period and consequent interdependence of family members shifted the hierarchical level at which selection acted; fixation of eusociality quickly followed. 5. The basic nesting ecology did not change when termites evolved eusociality, the change occurred in the allocation and use of existing resources within the social group, driven by nitrogen scarcity, mediated by trophallaxis, and made possible by a strongly lineage‐specific set of life history characteristics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号