首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81868篇
  免费   7706篇
  国内免费   16859篇
  2024年   344篇
  2023年   1490篇
  2022年   2935篇
  2021年   4525篇
  2020年   3393篇
  2019年   4014篇
  2018年   3437篇
  2017年   2832篇
  2016年   3610篇
  2015年   5095篇
  2014年   6442篇
  2013年   6292篇
  2012年   7718篇
  2011年   7089篇
  2010年   4865篇
  2009年   4607篇
  2008年   5106篇
  2007年   4669篇
  2006年   4231篇
  2005年   3494篇
  2004年   2819篇
  2003年   2629篇
  2002年   2168篇
  2001年   1896篇
  2000年   1755篇
  1999年   1444篇
  1998年   841篇
  1997年   664篇
  1996年   657篇
  1995年   530篇
  1994年   515篇
  1993年   419篇
  1992年   528篇
  1991年   430篇
  1990年   358篇
  1989年   333篇
  1988年   278篇
  1987年   234篇
  1986年   220篇
  1985年   205篇
  1984年   162篇
  1983年   150篇
  1982年   139篇
  1981年   72篇
  1980年   65篇
  1979年   70篇
  1976年   49篇
  1974年   66篇
  1973年   52篇
  1972年   57篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
51.
Current patterns of floral design in Pedicularis must have undergone an evolutionary process of interacting among components of floral traits, and then formed internal relationships among these traits. To detect such correlations, which may provide insight to understand flower evolution, 40 Pedicularis species representing all corolla types of the genus were studied. Results show that, interspecifically, pollen size correlates negatively with pollen number, but positively with pistil length. This suggests that plants evolve an optimal pollen size, which balances the advantages of large pollen size for gametophytic competition against the fecundity disadvantages of fewer pollen grains. In contrast to sex allocation theory, this study does not find a trade-off, but an interspecific positive correlation between pollen and ovule number. This is consistent with the hypothesis that genetic variation for resource acquisition may in part be responsible for the lack of negative correlation between male and female function.This work was supported by the State Key Basic Research and Development Plan, China (Grant No. G2000046804) to YHG. The authors would like to thank Peter K. Endress and two anonymous reviewers for providing critical comments and helpful suggestions, Qing-Feng Wang, Jing-Yuan Wang and Jin-Ming Chen for their helpful suggestions. Shi-Guo Sun, Jing Xia, and Qian Yu are thanked for their assistance in both the field work and laboratory phases of the project.  相似文献   
52.
53.
Caveolin induces membrane curvature and drives the formation of caveolae that participate in many crucial cell functions such as endocytosis. The central portion of caveolin-1 contains two helices (H1 and H2) connected by a three-residue break with both N- and C-termini exposed to the cytoplasm. Although a U-shaped configuration is assumed based on its inaccessibility by extracellular matrix probes, caveolin structure in a bilayer remains elusive. This work aims to characterize the structure and dynamics of caveolin-1 (D82–S136; Cav182–136) in a DMPC bilayer using NMR, fluorescence emission measurements, and molecular dynamics simulations. The secondary structure of Cav182–136 from NMR chemical shift indexing analysis serves as a guideline for generating initial structural models. Fifty independent molecular dynamics simulations (100 ns each) are performed to identify its favorable conformation and orientation in the bilayer. A representative configuration was chosen from these multiple simulations and simulated for 1 μs to further explore its stability and dynamics. The results of these simulations mirror those from the tryptophan fluorescence measurements (i.e., Cav182–136 insertion depth in the bilayer), corroborate that Cav182–136 inserts in the membrane with U-shaped conformations, and show that the angle between H1 and H2 ranges from 35 to 69°, and the tilt angle of Cav182–136 is 27 ± 6°. The simulations also reveal that specific faces of H1 and H2 prefer to interact with each other and with lipid molecules, and these interactions stabilize the U-shaped conformation.  相似文献   
54.
Bone and tooth, fundamental parts of the craniofacial skeleton, are anatomically and developmentally interconnected structures. Notably, pathological processes in these tissues underwent together and progressed in multilevels. Extracellular vesicles (EVs) are cell-released small organelles and transfer proteins and genetic information into cells and tissues. Although EVs have been identified in bone and tooth, particularly EVs have been identified in the bone formation and resorption, the concrete roles of EVs in bone and tooth development and diseases remain elusive. As such, we review the recent progress of EVs in bone and tooth to highlight the novel findings of EVs in cellular communication, tissue homeostasis, and interventions. This will enhance our comprehension on the skeletal biology and shed new light on the modulation of skeletal disorders and the potential of genetic treatment.  相似文献   
55.
56.
The synthesis of small glycoclusters with high affinity toward lectins is one of the important subjects in glycotechnology. Although cyclic α-(1→6)-d-octaglucoside (CI8) is an attractive scaffold on which to put glycosyl pendants, the compound has only secondary hydroxyl groups, which are relatively unreactive for substitution reactions. The oxidation of the vicinal diols of CI8 and reductive amination of the resultant dialdehydes with 2-aminoethyl mannoside gave mannose-CI8 conjugates with a variety of average mannose incorporation numbers (2-7). The average numbers were deduced from MALDI-TOF mass and 1H NMR spectroscopy. The binding ability of mannose-CI8 conjugates to concanavalin A increased with the increasing numbers of average mannose incorporation, reaching a plateau at tetravalence, as estimated from a latex bead-based agglutination lectin assay. Toxicity tests demonstrated the biocompatibility of mannose-CI8 conjugates.  相似文献   
57.
Swertia tetraptera Maxim is an annual alpine herb endemic to the Qinghai-Tibetan Plateau (QTP). Its populations are locally scattered as isolated patches throughout this region. Genetic variation within and among thirty-four populations of this species was assessed using ISSR fingerprinting with 10 primers. High levels of genetic diversity exist within species (P = 98.9%, I = 0.3475; He = 0.2227), while the within-population diversity is low (P = 32.7%, I = 0.177; He = 0.12). High levels of genetic differentiation were detected among populations based on various statistics, including Nei’s genetic diversity analysis (GST = 0.4608), Bayesian analysis (θB = 0.476) and AMOVA (FST = 0.57). That is, populations shared low levels of genetic identity (I = 0.2622–0.0966). This genetic structure was probably due to severe genetic drift, breeding system and limited gene flow. The observed genetic structure of the populations implies that different populations across the distribution range of the species should be sampled to maintain high genetic diversity when a conservation strategy is implemented.  相似文献   
58.
It has long been assumed that serial homologues are ancestrally similar—polysomerism resulting from a “duplication” or “repetition” of forms—and then often diverge—anisomerism, for example, as they become adapted to perform different tasks as is the case with the forelimb and hind limbs of humans. However, such an assumption, with crucial implications for comparative, evolutionary, and developmental biology, and for evolutionary developmental biology, has in general not really been tested by a broad analysis of the available empirical data. Perhaps not surprisingly, more recent anatomical comparisons, as well as molecular knowledge of how, for example, serial appendicular structures are patterned along with different anteroposterior regions of the body axis of bilateral animals, and how “homologous” patterning domains do not necessarily mark “homologous” morphological domains, are putting in question this paradigm. In fact, apart from showing that many so-called “serial homologues” might not be similar at all, recent works have shown that in at least some cases some “serial” structures are indeed more similar to each other in derived taxa than in phylogenetically more ancestral ones, as pointed out by authors such as Owen. In this article, we are taking a step back to question whether such assumptions are actually correct at all, in the first place. In particular, we review other cases of so-called “serial homologues” such as insect wings, arthropod walking appendages, Dipteran thoracic bristles, and the vertebrae, ribs, teeth, myomeres, feathers, and hairs of chordate animals. We show that: (a) there are almost never cases of true ancestral similarity; (b) in evolution, such structures—for example, vertebra—and/or their subparts—for example, “transverse processes”—many times display trends toward less similarity while in many others display trends toward more similarity, that is, one cannot say that there is a clear, overall trend to anisomerism.  相似文献   
59.
Metabolic pathway analysis, one of the most important fields in biochemistry, is pivotal to understanding the maintenance and modulation of the functions of an organism. Good comprehension of metabolic pathways is critical to understanding the mechanisms of some fundamental biological processes. Given a small molecule or an enzyme, how may one identify the metabolic pathways in which it may participate? Answering such a question is a first important step in understanding a metabolic pathway system. By utilizing the information provided by chemical-chemical interactions, chemical-protein interactions, and protein-protein interactions, a novel method was proposed by which to allocate small molecules and enzymes to 11 major classes of metabolic pathways. A benchmark dataset consisting of 3,348 small molecules and 654 enzymes of yeast was constructed to test the method. It was observed that the first order prediction accuracy evaluated by the jackknife test was 79.56% in identifying the small molecules and enzymes in a benchmark dataset. Our method may become a useful vehicle in predicting the metabolic pathways of small molecules and enzymes, providing a basis for some further analysis of the pathway systems.  相似文献   
60.
H Yamamoto  J T Yang 《Biopolymers》1974,13(6):1109-1116
Uncharged poly(Nε-methyl-L -lysine) (PMLL) and its isomer, poly(Nδ-ethyl-L -ornithine) (PELO), in alkaline solution (pH ca. 12) undergo a helix-to-β transition upon mild heating at 50°C or higher in a manner similar to that of poly(L -lysine) (PLL). The rate of conversion follows the order: PMLL < PELO < PLL. The helix can be regenerated upon cooling near zero degrees, for instance, after more than 12 hr at 2°C. At concentrations less than 0.02% the β form is intramolecular, but at higher concentrations both intra- and intermolecular β forms are generated. Poly(Nδ-methyl-L -ornithine) (PMLO), an isomer of PLL, behaves like poly(L -ornithine); uncharged PMLO in alkaline solution is partially helical and becomes disordered at elevated temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号