首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   12篇
  2017年   1篇
  2016年   5篇
  2015年   7篇
  2014年   5篇
  2013年   7篇
  2012年   6篇
  2011年   3篇
  2010年   4篇
  2009年   7篇
  2008年   11篇
  2007年   7篇
  2006年   4篇
  2005年   4篇
  2004年   6篇
  2003年   3篇
  2002年   4篇
  2001年   5篇
  2000年   7篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1995年   3篇
  1993年   2篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1926年   1篇
  1918年   1篇
  1903年   1篇
  1900年   1篇
  1891年   1篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
41.
How C-type lectins detect pathogens   总被引:10,自引:0,他引:10  
Glycosylation of proteins has proven extremely important in a variety of cellular processes, including enzyme trafficking, tissue homing and immune functions. In the past decade, increasing interest in carbohydrate-mediated mechanisms has led to the identification of novel carbohydrate-recognizing receptors expressed on cells of the immune system. These non-enzymatic lectins contain one or more carbohydrate recognition domains (CRDs) that determine their specificity. In addition to their cell adhesion functions, lectins now also appear to play a major role in pathogen recognition. Depending on their structure and mode of action, lectins are subdivided in several groups. In this review, we focus on the calcium (Ca(2+))-dependent lectin group, known as C-type lectins, with the dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) as a prototype type II C-type lectin organized in microdomains, and their role as pathogen recognition receptors in sensing microbes. Moreover, the cross-talk of C-type lectins with other receptors, such as Toll-like receptors, will be discussed, highlighting the emerging model that microbial recognition is based on a complex network of interacting receptors.  相似文献   
42.
Dendritic cells (DC) function as professional phagocytes to kill Candida albicans and subsequently present it to the adaptive immune system. Monocytes, macrophages and DC were generated from five individual donors and their Candida-killing capacity and cytokine release were assessed. Compared to monocytes and macrophages, DC from healthy volunteers were significantly less effective in C. albicans--stimulated cytokine release, killing of C. albicans blastoconidia and damaging of C. albicans hyphae. In conclusion, while important as antigen-presenting cells and initiators of the adaptive immune system, DC are poor in both intracellular killing and damaging of C. albicans hyphae. Effective handling of large numbers of C. albicans is the prime task of the innate immune system consisting of large numbers of neutrophils and monocytes.  相似文献   
43.
Activated leukocyte cell adhesion molecule (ALCAM/CD166), a member of the immunoglobulin superfamily with five extracellular immunoglobulin-like domains, facilitates heterophilic (ALCAM-CD6) and homophilic (ALCAM-ALCAM) cell-cell interactions. While expressed in a wide variety of tissues and cells, ALCAM is restricted to subsets of cells usually involved in dynamic growth and/or migration processes. A structure-function analysis, using two monoclonal anti-ALCAM antibodies and a series of amino-terminally deleted ALCAM constructs, revealed that homophilic cell adhesion depended on ligand binding mediated by the membrane-distal amino-terminal immunoglobulin domain and on avidity controlled by ALCAM clustering at the cell surface involving membrane-proximal immunoglobulin domains. Co-expression of a transmembrane ALCAM deletion mutant, which lacks the ligand binding domain, and endogenous wild-type ALCAM inhibited homophilic cell-cell interactions by interference with ALCAM avidity, while homophilic, soluble ligand binding remained unaltered. The extracellular structures of ALCAM thus provide two structurally and functionally distinguishable modules, one involved in ligand binding and the other in avidity. Functionality of both modules is required for stable homophilic ALCAM-ALCAM cell-cell adhesion.  相似文献   
44.
45.
46.

Background

Genomic selection and estimation of genomic breeding values (GBV) are widely used in cattle and plant breeding. Several studies have attempted to detect population subdivision by investigating the structure of the genomic relationship matrix G. However, the question of how these effects influence GBV estimation using genomic best linear unbiased prediction (GBLUP) has received little attention.

Methods

We propose a simple method to decompose G into two independent covariance matrices, one describing the covariance that results from systematic differences in allele frequencies between groups at the pedigree base (GA*) and the other describing genomic relationships (GS) corrected for these differences. Using this decomposition and Fst statistics, we examined whether observed genetic distances between genotyped subgroups within populations resulted from the heterogeneous genetic structure present at the base of the pedigree and/or from breed divergence. Using this decomposition, we tested three models in a forward prediction validation scenario on six traits using Brown Swiss and dual-purpose Fleckvieh cattle data. Model 0 (M0) used both components and is equivalent to the model using the standard G-matrix. Model 1 (M1) used GS only and model 2 (M2), an extension of M1, included a fixed genetic group effect. Moreover, we analyzed the matrix of contributions of each base group (Q) and estimated the effects and prediction errors of each base group using M0 and M1.

Results

The proposed decomposition of G helped to examine the relative importance of the effects of base groups and segregation in a given population. We found significant differences between the effects of base groups for each breed. In forward prediction, differences between models in terms of validation reliability of estimated direct genomic values were small but predictive power was consistently lowest for M1. The relative advantage of M0 or M2 in prediction depended on breed, trait and genetic composition of the validation group. Our approach presents a general analogy with the use of genetic groups in conventional animal models and provides proof that standard GBLUP using G yields solutions equivalent to M0, where base groups are considered as correlated random effects within the additive genetic variance assigned to the genetic base.  相似文献   
47.

Background

Molecular genetic studies on rare tumour entities, such as bone tumours, often require the use of decalcified, formalin-fixed, paraffin-embedded tissue (dFFPE) samples. Regardless of which decalcification procedure is used, this introduces a vast breakdown of DNA that precludes the possibility of further molecular genetic testing. We set out to establish a robust protocol that would overcome these intrinsic hurdles for bone tumour research.

Findings

The goal of our study was to establish a protocol, using a modified DNA isolation procedure and quality controls, to select decalcified samples suitable for array-CGH testing. Archival paraffin blocks were obtained from 9 different pathology departments throughout Europe, using different fixation, embedding and decalcification procedures, in order to preclude a bias for certain lab protocols. Isolated DNA samples were subjected to direct chemical labelling and enzymatic labelling systems and were hybridised on a high resolution oligonucleotide chip containing 44,000 reporter elements. Genomic alterations (gains and losses) were readily detected in most of the samples analysed. For example, both homozygous deletions of 0.6 Mb and high level of amplifications of 0.7 Mb were identified.

Conclusions

We established a robust protocol for molecular genetic testing of dFFPE derived DNA, irrespective of fixation, decalcification or sample type used. This approach may greatly facilitate further genetic testing on rare tumour entities where archival decalcified, formalin fixed samples are the only source.  相似文献   
48.
Cell migration through 3D tissue depends on a physicochemical balance between cell deformability and physical tissue constraints. Migration rates are further governed by the capacity to degrade ECM by proteolytic enzymes, particularly matrix metalloproteinases (MMPs), and integrin- and actomyosin-mediated mechanocoupling. Yet, how these parameters cooperate when space is confined remains unclear. Using MMP-degradable collagen lattices or nondegradable substrates of varying porosity, we quantitatively identify the limits of cell migration by physical arrest. MMP-independent migration declined as linear function of pore size and with deformation of the nucleus, with arrest reached at 10% of the nuclear cross section (tumor cells, 7 µm2; T cells, 4 µm2; neutrophils, 2 µm2). Residual migration under space restriction strongly depended upon MMP-dependent ECM cleavage by enlarging matrix pore diameters, and integrin- and actomyosin-dependent force generation, which jointly propelled the nucleus. The limits of interstitial cell migration thus depend upon scaffold porosity and deformation of the nucleus, with pericellular collagenolysis and mechanocoupling as modulators.  相似文献   
49.
50.
Dual function of C-type lectin-like receptors in the immune system   总被引:20,自引:0,他引:20  
Carbohydrate-binding C-type lectin and lectin-like receptors play an important role in the immune system. The large family can be subdivided into subtypes according to their structural similarities and functional differences. The selectins are of major importance in mediating cell adhesion and migration, and the mannose receptor subfamily is specialised in the binding and uptake of pathogens. Recent advances show that some of the type II C-type lectin-like receptors, such as DC-SIGN, can function both as an adhesion receptor and as a phagocytic pathogen-recognition receptor, similar to the Toll-like receptors. Although major differences in the cytoplasmic domains of these receptors might predict their function, recent findings show that differences in glycosylation of ligands can dramatically alter C-type lectin-like receptor usage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号