首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   6篇
  2021年   2篇
  2020年   1篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   5篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2010年   5篇
  2009年   5篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2002年   1篇
  1998年   6篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1977年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
71.
72.

Background

Cochliobolus heterostrophus is a dothideomycete that causes Southern Corn Leaf Blight disease. There are two races, race O and race T that differ by the absence (race O) and presence (race T) of ~ 1.2-Mb of DNA encoding genes responsible for the production of T-toxin, which makes race T much more virulent than race O. The presence of repetitive elements in fungal genomes is considered to be an important source of genetic variability between different species.

Results

A detailed analysis of class I and II TEs identified in the near complete genome sequence of race O was performed. In total in race O, 12 new families of transposons were identified. In silico evidence of recent activity was found for many of the transposons and analyses of expressed sequence tags (ESTs) demonstrated that these elements were actively transcribed. Various potentially active TEs were found near coding regions and may modify the expression and structure of these genes by acting as ectopic recombination sites. Transposons were found on scaffolds carrying polyketide synthase encoding genes, responsible for production of T-toxin in race T. Strong evidence of ectopic recombination was found, demonstrating that TEs can play an important role in the modulation of genome architecture of this species. The Repeat Induced Point mutation (RIP) silencing mechanism was shown to have high specificity in C. heterostrophus, acting only on transposons near coding regions.

Conclusions

New families of transposons were identified. In C. heterostrophus, the RIP silencing mechanism is efficient and selective. The co-localization of effector genes and TEs, therefore, exposes those genes to high rates of point mutations. This may accelerate the rate of evolution of these genes, providing a potential advantage for the host. Additionally, it was shown that ectopic recombination promoted by TEs appears to be the major event in the genome reorganization of this species and that a large number of elements are still potentially active. So, this study provides information about the potential impact of TEs on the evolution of C. heterostrophus.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-536) contains supplementary material, which is available to authorized users.  相似文献   
73.

Background

There is increasing recognition that asthma and eczema are heterogeneous diseases. We investigated the predictive ability of a spectrum of machine learning methods to disambiguate clinical sub-groups of asthma, wheeze and eczema, using a large heterogeneous set of attributes in an unselected population. The aim was to identify to what extent such heterogeneous information can be combined to reveal specific clinical manifestations.

Methods

The study population comprised a cross-sectional sample of adults, and included representatives of the general population enriched by subjects with asthma. Linear and non-linear machine learning methods, from logistic regression to random forests, were fit on a large attribute set including demographic, clinical and laboratory features, genetic profiles and environmental exposures. Outcome of interest were asthma, wheeze and eczema encoded by different operational definitions. Model validation was performed via bootstrapping.

Results

The study population included 554 adults, 42% male, 38% previous or current smokers. Proportion of asthma, wheeze, and eczema diagnoses was 16.7%, 12.3%, and 21.7%, respectively. Models were fit on 223 non-genetic variables plus 215 single nucleotide polymorphisms. In general, non-linear models achieved higher sensitivity and specificity than other methods, especially for asthma and wheeze, less for eczema, with areas under receiver operating characteristic curve of 84%, 76% and 64%, respectively. Our findings confirm that allergen sensitisation and lung function characterise asthma better in combination than separately. The predictive ability of genetic markers alone is limited. For eczema, new predictors such as bio-impedance were discovered.

Conclusions

More usefully-complex modelling is the key to a better understanding of disease mechanisms and personalised healthcare: further advances are likely with the incorporation of more factors/attributes and longitudinal measures.
  相似文献   
74.
In a recent study, we reported that the combined average mutation rate of 10 di-, 6 tri-, and 8 tetranucleotide repeats in Drosophila melanogaster was 6.3 x 10(-6) mutations per locus per generation, a rate substantially below that of microsatellite repeat units in mammals studied to date (range = 10(-2)-10(-5) per locus per generation). To obtain a more precise estimate of mutation rate for dinucleotide repeat motifs alone, we assayed 39 new dinucleotide repeat microsatellite loci in the mutation accumulation lines from our earlier study. Our estimate of mutation rate for a total of 49 dinucleotide repeats is 9.3 x 10(-6) per locus per generation, only slightly higher than the estimate from our earlier study. We also estimated the relative difference in microsatellite mutation rate among di-, tri-, and tetranucleotide repeats in the genome of D. melanogaster using a method based on population variation, and we found that tri- and tetranucleotide repeats mutate at rates 6.4 and 8.4 times slower than that of dinucleotide repeats, respectively. The slower mutation rates of tri- and tetranucleotide repeats appear to be associated with a relatively short repeat unit length of these repeat motifs in the genome of D. melanogaster. A positive correlation between repeat unit length and allelic variation suggests that mutation rate increases as the repeat unit lengths of microsatellites increase.   相似文献   
75.
76.
Molecular evolution of the period gene in Drosophila athabasca   总被引:1,自引:0,他引:1  
We measured nucleotide variability within and between the three semispecies of the Drosophila athabasca complex, at the period (per) gene by using a polymerase chain reaction-based four-cutter restriction- enzyme analysis. The levels of polymorphism varied considerably between the three semispecies. Our results for per, combined with previous data for X-linked allozymes, suggest that the X chromosome in the western- northern semispecies is less variable than expected under an equilibrium-neutral model. Both the pattern of divergence between the semispecies and a cladistic clustering of per haplotypes support the previously hypothesized grouping of eastern A and eastern B as the two most recently diverged semispecies. A 21-bp in-frame segment in the region of per which shares sequence similarity with the neuronal development gene single minded is deleted in all eastern A and eastern B flies examined but is present in all of the western-northern flies and all other published per sequences. Despite these hints that there may be significant differences at the per gene between the semispecies, especially the western-northern group versus the two eastern groups, there is no compelling evidence that per is involved in the mating song differences between the semispecies.   相似文献   
77.
We address the problem of the possible significance of biological speciation to the magnitude and pattern of divergence of asexually transmitted characters in bisexual species. The empirical data for this report consist of restriction endonuclease site variability in maternally transmitted mitochondrial DNA (mtDNA) isolated from 82 samples of Peromyscus polionotus and P. leucopus collected from major portions of the respective species' ranges. Data are analyzed together with previously published information on P. maniculatus, a sibling species to polionotus. Maps of restriction sites indicate that all of the variation observed can be reasonably attributed to base substitutions leading to loss or gain of particular recognition sites. Magnitude of mtDNA sequence divergence within polionotus (maximum approximately equal to 2%) is roughly comparable to that observed within any of five previously identified mtDNA assemblages in maniculatus. Sequence divergence within leucopus (maximum approximately equal to 4%) is somewhat greater than that within polionotus. Consideration of probable evolutionary links among mtDNA restriction site maps allowed estimation of matriarchal phylogenies within polionotus and leucopus. Clustering algorithms and qualitative Wagner procedures were used to generate phenograms and parsimony networks, respectively, for the between-species comparisons. Three simple graphical models are presented to illustrate some conceivable relationships of mtDNA differentiation to speciation. In theoretical case I, each of two reproductively defined species (A and B) is monophyletic in matriarchal genealogy; the common female ancestor of either species can either predate or postdate the speciation. In case II, neither species is monophyletic in matriarchal genotype. In case III, species B is monophyletic but forms a subclade within A which is thus paraphyletic with respect to B. The empirical results for mtDNA in maniculatus and polionotus appear to conform closely to case III. These theoretical and empirical considerations raise a number of questions about the general relationship of the speciation process to the evolution of uniparentally transmitted traits. Some of these considerations are presented, and it is suggested that the distribution patterns of mtDNA sequence variation within and among extant species should be of considerable relevance to the particular demographies of speciation.   相似文献   
78.

The authors regret having omitted grant attributions in the original publication. The funding section is herewith updated to reflect the change. “Funding attributed to Tommaso Pizzorusso was provided by EPIGEN Flagship project and PRIN2017HM8FA, funding attributed to Alessandro Cellerino was provided by Fondazione Pisa ETHERNA project, funding attributed to Pierre Baldi was provided by NIH (grant NIH GM123558), funding attributed to Jessica Kwok was provided by the Leverhulme Trust project grant (RPG‐2018‐100).”  相似文献   
79.
Binge eating is a heritable trait associated with eating disorders and refers to the rapid consumption of a large quantity of energy-dense food that is, associated with loss of control and negative affect. Binge eating disorder is the most common eating disorder in the United States; however, the genetic basis is unknown. We previously identified robust mouse inbred strain differences between C57BL/6J and DBA/2J in binge-like eating of sweetened palatable food in an intermittent access, conditioned place preference paradigm. To map the genetic basis of changes in body weight and binge-like eating (BLE) and to identify candidate genes, we conducted quantitative trait locus (QTL) analysis in 128 C57BL/6J x DBA/2J-F2 mice combined with PheQTL and trait covariance analysis in GeneNetwork2 using legacy BXD-RI trait datasets. We identified a QTL on Chromosome 18 influencing changes in body weight across days in females (log of the odds [LOD] = 6.3; 1.5-LOD: 3–12 cM) that contains the candidate gene Zeb1. We also identified a sex-combined QTL influencing initial palatable food intake on Chromosome 5 (LOD = 5.8; 1.5-LOD: 21–28 cM) that contains the candidate gene Lcorl and a second QTL influencing escalated palatable food intake on Chromosome 6 in males (LOD = 5.4; 1.5-LOD: 50–59 cM) that contains the candidate genes Adipor2 and Plxnd1. Finally, we identified a suggestive QTL in females for slope of BLE on distal Chromosome 18 (LOD = 4.1; p = 0.055; 1.5-LOD: 23–35 cM). Future studies will use BXD-RI strains to fine map loci and support candidate gene nomination for gene editing.  相似文献   
80.
A major impediment to the confirmation of free radical mechanisms in pathogenesis is a lack of direct, chemical evidence that oxygen centered free radicals actually arise in living tissues in quantities sufficient to cause serious damage. This investigation was conducted to validate the use of dimethyl sulfoxide (DMSO) as a quantitative molecular probe for the generation of hydroxyl radicals (HO.) under physiologic conditions. Reaction of HO. with DMSO produces methane sulfinic acid (MSA) as a primary product, which can be detected by a simple colorimetric assay. To develop a method for estimating total HO. production, we studied two model systems: the superoxide driven Fenton reaction in vitro, using xanthine oxidase as the source of superoxide, and a computer model of Fenton chemistry. Measured MSA production both in vitro and in the computer model was a predictable function of the concentrations of DMSO and competing scavengers of HO., according to the principle of competition kinetics. Both experimental results and model calculations showed that Scatchard analysis may be used to infer total HO. generation, despite the presence of scavengers other than DMSO, such as mannitol. Thus, methane sulfinic acid production from DMSO holds promise as an easily measured marker for HO. formation in biologic systems pretreated with DMSO, and Scatchard analysis of repeated experiments with varying DMSO concentrations can yield an estimate of total HO. generation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号