首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3005篇
  免费   289篇
  国内免费   2篇
  2023年   14篇
  2022年   21篇
  2021年   59篇
  2020年   48篇
  2019年   73篇
  2018年   84篇
  2017年   73篇
  2016年   113篇
  2015年   140篇
  2014年   168篇
  2013年   213篇
  2012年   185篇
  2011年   193篇
  2010年   138篇
  2009年   136篇
  2008年   158篇
  2007年   132篇
  2006年   113篇
  2005年   104篇
  2004年   109篇
  2003年   113篇
  2002年   99篇
  2001年   72篇
  2000年   78篇
  1999年   60篇
  1998年   40篇
  1997年   23篇
  1996年   27篇
  1995年   19篇
  1994年   14篇
  1993年   21篇
  1992年   42篇
  1991年   28篇
  1990年   30篇
  1989年   39篇
  1988年   39篇
  1987年   19篇
  1986年   32篇
  1985年   20篇
  1984年   12篇
  1983年   19篇
  1982年   16篇
  1981年   14篇
  1980年   10篇
  1979年   17篇
  1978年   12篇
  1977年   15篇
  1974年   17篇
  1973年   12篇
  1969年   7篇
排序方式: 共有3296条查询结果,搜索用时 15 毫秒
981.
Escherichia coli O157:H7 carried on plant surfaces, including alfalfa sprouts, has been implicated in food poisoning and outbreaks of disease in the United States. Adhesion to cell surfaces is a key component for bacterial establishment and colonization on many types of surfaces. Several E. coli O157:H7 surface proteins are thought to be important for adhesion and/or biofilm formation. Therefore, we examined whether mutations in several genes encoding potential adhesins and regulators of adherence have an effect on bacterial binding to plants and also examined the role of these genes during adhesion to Caco-2 cells and during biofilm formation on plastic in vitro. The genes tested included those encoding adhesins (cah, aidA1, and ompA) and mediators of hyperadherence (tdcA, yidE, waaI, and cadA) and those associated with fimbria formation (csgA, csgD, and lpfD2). The introduction of some of these genes (cah, aidA1, and csg loci) into an E. coli K-12 strain markedly increased its ability to bind to alfalfa sprouts and seed coats. The addition of more than one of these genes did not show an additive effect. In contrast, deletion of one or more of these genes in a strain of E. coli O157:H7 did not affect its ability to bind to alfalfa. Only the absence of the ompA gene had a significant effect on binding, and the plant-bacterium interaction was markedly reduced in a tdcA ompA double mutant. In contrast, the E. coli O157:H7 ompA and tdcA ompA mutant strains were only slightly affected in adhesion to Caco-2 cells and during biofilm formation. These findings suggest that some adhesins alone are sufficient to promote binding to alfalfa and that they may exist in E. coli O157:H7 as redundant systems, allowing it to compensate for the loss of one or more of these systems. Binding to the three types of surfaces appeared to be mediated by overlapping but distinct sets of genes. The only gene which appeared to be irreplaceable for binding to plant surfaces was ompA.  相似文献   
982.
Here we numerically study the emergence of stochastic resonance as a mild phenomenon and how this transforms into an amazing enhancement of the signal-to-noise ratio at several levels of a disturbing ambient noise. The setting is a cooperative, interacting complex system modelled as an Ising-Hopfield network in which the intensity of mutual interactions or “synapses” varies with time in such a way that it accounts for, e.g., a kind of fatigue reported to occur in the cortex. This induces nonequilibrium phase transitions whose rising comes associated to various mechanisms producing two types of resonance. The model thus clarifies the details of the signal transmission and the causes of correlation among noise and signal. We also describe short-time persistent memory states, and conclude on the limited relevance of the network wiring topology. Our results, in qualitative agreement with the observation of excellent transmission of weak signals in the brain when competing with both intrinsic and external noise, are expected to be of wide validity and may have technological application. We also present here a first contact between the model behavior and psychotechnical data.  相似文献   
983.

Objective:

Obesity‐associated nonalcoholic fatty liver disease (NAFLD), covering from simple steatosis to nonalcoholic steatohepatitis (NASH), is a common cause of chronic liver disease. Aberrant production of adipocytokines seems to play a main role in most obesity‐associated disorders. Changes in adipocytokines in obesity could be mediated by alterations in cyclic GMP (cGMP) homeostasis. The aims of this work were: (1) to study the role of altered cGMP homeostasis in altered adipocytokines in morbid obesity, (2) to assess whether these alterations are different in simple steatosis or NASH, and (3) to assess whether these changes reverse in obese patients after bariatric surgery.

Design and Methods:

In 47 patients with morbid obesity and 45 control subjects, the levels in blood of adipocytokines, cGMP, nitric oxide (NO) metabolites, and atrial natriuretic peptide (ANP) were studied. Whether weight loss after a bariatric surgery reverses the changes in these parameters was evaluated.

Results:

NO metabolites and leptin increase (and adiponectin decreases) similarly in patients with steatosis or NASH, suggesting that these changes are due to morbid obesity and not to liver disease. Inflammation and cGMP homeostasis are affected both by morbid obesity and by liver disease. The increases in interleukin 6 (IL‐6), interleukin 18 (IL‐18), plasma cGMP, ANP, and the decrease in cGMP in lymphocytes are stronger in patients with NASH than with steatosis. All these changes reverse completely after bariatric surgery and weight loss, except IL‐18.

Conclusion:

Altered cGMP homeostasis seems to contribute more than inflammation to changes in leptin and adiponectin in morbid obesity.  相似文献   
984.
Function of the ascorbate-glutathione cycle in aged sunflower seeds   总被引:3,自引:1,他引:2  
The function of the ascorbate-glutathione (AsA/GSH) cycle was analyzed in seeds of sunflower ( Helianthus annuus L. cv. Peredovik) subjected to accelerated ageing at 43°C and 75% relative humidity for 1 to 11 days. The study was performed using dry seeds and seeds hydrated by imbibition in distilled water for 4 h at 25 °C. Lipid peroxidation was also determined by measuring the malondialdehyde (MDA) level. As the ageing period increased, a progressive loss of seed viability became increasingly evident. Even though high levels of MDA were delected, the MDA level did not change during accelerated ageing, suggesting that lipid peroxidation might occur to some extent. The study of the ascorbate/glutathione (AsA/GSH) cycle revealed that the GSH system is the major detoxifying mechanism in both dry and imbibed sunflower seeds. The GSH system is mainly located in the embryo, and its protective role is mediated by reactions that consume the GSH pool and, thereby, minimize the increase of the oxidized form (GSSG). Seed imbibition activates cellular metabolism and allows some antioxidant enzymes like glutathione reductase (EC 1,6,4,2) to act upon toxic agents. These reactions provide a reducing status, so that repair of damage becomes possible. However, prolonged ageing conditions (11 days) result in an irreversible damage, as evidenced by the appearance of dead seeds when the germination period ended. Multiple regression analysis revealed the effectiveness of the GSH system in aged seeds, especially upon imbibition and until the AsA/GSH cycle became completely functional.  相似文献   
985.
Analytical ultracentrifugation (AUC) can be used to study reversible interactions between macromolecules over a wide range of interaction strengths and under physiological conditions. This makes AUC a method of choice to quantitatively assess stoichiometry and thermodynamics of homo- and hetero-association that are transient and reversible in biochemical processes. In the modality of sedimentation equilibrium (SE), a balance between diffusion and sedimentation provides a profile as a function of radial distance that depends on a specific association model. Herein, a detailed SE protocol is described to determine the size and monomer-monomer association energy of a small membrane protein oligomer using an analytical ultracentrifuge. AUC-ES is label-free, only based on physical principles, and can be used on both water soluble and membrane proteins. An example is shown of the latter, the small hydrophobic (SH) protein in the human respiratory syncytial virus (hRSV), a 65-amino acid polypeptide with a single α-helical transmembrane (TM) domain that forms pentameric ion channels. NMR-based structural data shows that SH protein has two protonatable His residues in its transmembrane domain that are oriented facing the lumen of the channel. SE experiments have been designed to determine how pH affects association constant and the oligomeric size of SH protein. While the pentameric form was preserved in all cases, its association constant was reduced at low pH. These data are in agreement with a similar pH dependency observed for SH channel activity, consistent with a lumenal orientation of the two His residues in SH protein. The latter may experience electrostatic repulsion and reduced oligomer stability at low pH. In summary, this method is applicable whenever quantitative information on subtle protein-protein association changes in physiological conditions have to be measured.    相似文献   
986.

Rapid improvements in mass spectrometry sensitivity and mass accuracy combined with improved liquid chromatography separation technologies allow acquisition of high throughput metabolomics data, providing an excellent opportunity to understand biological processes. While spectral deconvolution software can identify discrete masses and their associated isotopes and adducts, the utility of metabolomic approaches for many statistical analyses such as identifying differentially abundant ions depends heavily on data quality and robustness, especially, the accuracy of aligning features across multiple biological replicates. We have developed a novel algorithm for feature alignment using density maximization. Instead of a greedy iterative, hence local, merging strategy, which has been widely used in the literature and in commercial applications, we apply a global merging strategy to improve alignment quality. Using both simulated and real data, we demonstrate that our new algorithm provides high map (e.g. chromatogram) coverage, which is critically important for non-targeted comparative metabolite profiling of highly replicated biological datasets.

  相似文献   
987.
988.
989.
A myriad of innovative bispecific antibody (BsAb) platforms have been reported. Most require significant protein engineering to be viable from a development and manufacturing perspective. Single-chain variable fragments (scFvs) and diabodies that consist only of antibody variable domains have been used as building blocks for making BsAbs for decades. The drawback with Fv-only moieties is that they lack the native-like interactions with CH1/CL domains that make antibody Fab regions stable and soluble. Here, we utilize a redesigned Fab interface to explore 2 novel Fab-based BsAbs platforms. The redesigned Fab interface designs limit heavy and light chain mixing when 2 Fabs are co-expressed simultaneously, thus allowing the use of 2 different Fabs within a BsAb construct without the requirement of one or more scFvs. We describe the stability and activity of a HER2×HER2 IgG-Fab BsAb, and compare its biophysical and activity properties with those of an IgG-scFv that utilizes the variable domains of the same parental antibodies. We also generated an EGFR × CD3 tandem Fab protein with a similar format to a tandem scFv (otherwise known as a bispecific T cell engager or BiTE). We show that the Fab-based BsAbs have superior biophysical properties compared to the scFv-based BsAbs. Additionally, the Fab-based BsAbs do not simply recapitulate the activity of their scFv counterparts, but are shown to possess unique biological activity.  相似文献   
990.

Introduction

Pneumonia is the most frequent type of infection in cancer patients and a frequent cause of ICU admission. The primary aims of this study were to describe the clinical and microbiological characteristics and outcomes in critically ill cancer patients with severe pneumonia.

Methods

Prospective cohort study in 325 adult cancer patients admitted to three ICUs with severe pneumonia not acquired in the hospital setting. Demographic, clinical and microbiological data were collected.

Results

There were 229 (71%) patients with solid tumors and 96 (29%) patients with hematological malignancies. 75% of all patients were in septic shock and 81% needed invasive mechanical ventilation. ICU and hospital mortality rates were 45.8% and 64.9%. Microbiological confirmation was present in 169 (52%) with a predominance of Gram negative bacteria [99 (58.6%)]. The most frequent pathogens were methicillin-sensitive S. aureus [42 (24.9%)], P. aeruginosa [41(24.3%)] and S. pneumonia [21 (12.4%)]. A relatively low incidence of MR [23 (13.6%)] was observed. Adequate antibiotics were prescribed for most patients [136 (80.5%)]. In multivariate analysis, septic shock at ICU admission [OR 5.52 (1.92–15.84)], the use of invasive MV [OR 12.74 (3.60–45.07)] and poor Performance Status [OR 3.00 (1.07–8.42)] were associated with increased hospital mortality.

Conclusions

Severe pneumonia is associated with high mortality rates in cancer patients. A relatively low rate of MR pathogens is observed and severity of illness and organ dysfunction seems to be the best predictors of outcome in this population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号