首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   6篇
  71篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2017年   2篇
  2015年   3篇
  2014年   9篇
  2013年   5篇
  2012年   9篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1994年   2篇
  1992年   1篇
  1986年   1篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有71条查询结果,搜索用时 0 毫秒
21.
Tumor differentiation factor (TDF) is a recently discovered protein, produced by the pituitary gland and secreted into the bloodstream. TDF and TDF-P1, a 20-amino acid peptide selected from the open reading frame of TDF, induce differentiation in human breast and prostate cancer cells but not in other cells. TDF protein has no identified site of action or receptor, and its mechanism of action is unknown. Here, we used TDF-P1 to purify and identify potential TDF receptor (TDF-R) candidates from MCF7 steroid-responsive breast cancer cells and non-breast HeLa cancerous cells using affinity purification chromatography (AP), and mass spectrometry (MS). We identified four candidate proteins from the 70-kDa heat shock protein (HSP70) family in MCF7 cells. Experiments in non-breast HeLa cancerous cells did not identify any TDF-R candidates. AP and MS experiments were validated by AP and Western blotting (WB). We additionally looked for TDF-R in steroid-resistant BT-549 cells and human dermal fibroblasts (HDF-a) using AP and WB. TDF-P1 interacts with potential TDF-R candidates from MCF7 and BT-549 breast cells but not from HeLa or HDF-a cells. Immunofluorescence (IF) experiments identified GRP78, a TDF-R candidate, at the cell surface of MCF7, BT-549 breast cells, and HeLa cells but not HDF-a cells. IF of other HSP70 proteins demonstrated labeling on all four cell types. These results point toward GRP78 and HSP70 proteins as strong TDF-R candidates and suggest that TDF interacts with its receptor, exclusively on breast cells, through a steroid-independent pathway.  相似文献   
22.

Background  

Proteomic analysis has proven to be the most powerful method for describing plant species and lines, and for identification of proteins in complex mixtures. The strength of this method resides in high resolving power of two-dimensional electrophoresis (2-DE), coupled with highly sensitive mass spectrometry (MS), and sequence homology search. By using this method, we might find polymorphic markers to differentiate peanut subspecies.  相似文献   
23.
24.
25.
Scanlon MJ  Chen KD  McKnight CC IV 《Genetics》2000,155(3):1379-1389
The narrow sheath mutant of maize displays a leaf and plant stature phenotype controlled by the duplicate factor mutations narrow sheath1 and narrow sheath2. Mutant leaves fail to develop a lateral domain that includes the leaf margins. Genetic data are presented to show that the narrow sheath mutations map to duplicated chromosomal regions, reflecting an ancestral duplication of the maize genome. Genetic and cytogenetic evidence indicates that the original mutation at narrow sheath2 is associated with a chromosomal inversion on the long arm of chromosome 4. Meristematic sectors of dual aneuploidy were generated, producing plants genetically mosaic for NARROW SHEATH function. These mosaic plants exhibited characteristic half-plant phenotypes, in which leaves from one side of the plant were of nonmutant morphology and leaves from the opposite side were of narrow sheath mutant phenotype. The data suggest that the narrow sheath duplicate genes may perform ancestrally conserved, redundant functions in the development of a lateral domain in the maize leaf.  相似文献   
26.
The rainbow trout egg vitelline envelope (VE) is constructed of three proteins, called VEalpha,VEbeta, and VEgamma, that are synthesized and secreted by the liver and transported in the bloodstream to the ovary, the site of VE assembly around eggs. All three proteins possess an N-terminal signal peptide, a zona pellucida domain, a consensus furin-like cleavage site (CFLCS) close to the C terminus, and a short propeptide downstream of the CFLCS. Proteolytic processing at the CFLCS results in loss of the short C-terminal propeptide from precursor proteins and enables incorporation of mature proteins into the VE. Here mass spectrometry (matrix-assisted laser desorption ionization time-of-flight-mass spectrometry and liquid chromatography-mass spectrometry with a micromass-quadrupole TOF hybrid mass and a QSTAR Pulsar i mass spectrometer) was employed with VE proteins isolated from rainbow trout eggs in a peptidomics-based approach to determine the following: 1) the C-terminal amino acid of mature, proteolytically processed VE proteins; 2) the cellular site of proteolytic processing at the CFLCS of VE precursor proteins; and 3) the relationship between proteolytic processing and limited covalent cross-linking of VE proteins. Peptides derived from the C-terminal region were found for all three VE proteins isolated from eggs, indicating that processing at the CFLCS occurs after the arrival of VE precursor proteins at the egg. Consistent with this conclusion, peptides containing an intact CFLCS were also found for all three VE proteins isolated from eggs. Furthermore, peptides derived from the C-terminal propeptides of VE protein heterodimers VEalpha-VEgamma and VEbeta-VEgamma were found, suggesting that a small amount of VE protein can be covalently cross-linked on eggs prior to proteolytic processing at the CFLCS. Collectively, these results provide important evidence about the process of VE formation in rainbow trout and other non-cyprinoid fish and allow comparisons to be made with the process of zona pellucida formation in mammals.  相似文献   
27.
28.
Tsai  CC  Huang  SC 《Plant molecular biology》1999,40(4):753-753
Plant Molecular Biology -  相似文献   
29.
Tumor differentiation factor (TDF) is a pituitary protein that is secreted into the bloodstream and has an endocrine function. TDF and TDF-P1, a 20-residue peptide selected from the ORF of TDF, induce differentiation in human breast and prostate cancer cells, but not in other cells. TDF has no known mechanism of action. In our recent study, we identified heat shock 70 kDa proteins (HSP70s) as TDF receptors (TDF-Rs) in breast cancer cells. Therefore, we sought to investigate whether TDF-R candidates from prostate cancer cells are the same as those identified in breast cancer cells. Here, we used TDF-P1 to purify the potential TDF-R candidates by affinity purification chromatography from DU145 and PC3 steroid-resistant prostate cancer cells, LNCaP steroid-responsive prostate cancer cells, and nonprostate NG108 neuroblastoma and BLK CL.4 fibroblast-like cells. We identified the purified proteins by MS, and validated them by western blotting, immunofluorescence microscopy, immunoaffinity purification chromatography, and structural biology. We identified seven candidate proteins, of which three were from the HSP70 family. These three proteins were validated as potential TDF-R candidates in LNCaP steroid-responsive and in DU145 and PC3 steroid-resistant prostate cancer cells, but not in NG108 neuroblastoma and BLK CL.4 fibroblast-like cells. Our previous study and the current study suggest that GRP78, and perhaps HSP70s, are strong TDF-R candidates, and further suggest that TDF interacts with its receptors exclusively in breast and prostate cells, inducing cell differentiation through a novel, steroid-independent pathway.  相似文献   
30.
The rainbow trout egg vitelline envelope (VE) is composed of three proteins, called VEalpha ( approximately 58-60kDa Mr), VEbeta ( approximately 52kDa Mr), and VEgamma ( approximately 47kDa Mr). Each of these proteins is related to mouse egg zona pellucida (ZP) glycoproteins, called ZP1, ZP2, and ZP3, and possesses a ZP domain that has been implicated in the polymerization of the proteins into long, interconnected fibrils or filaments. Here, trout egg VEbeta and VEgamma were purified to homogeneity and analyzed under various experimental conditions (SDS-PAGE, Blue Native-(BN-)PAGE, size-exclusion chromatography, and transmission electron microscopy) to determine whether individual VE proteins would polymerize into fibrils in vitro. Such analyses revealed that in the presence of 6M urea each VE protein is present primarily as monomers and as small oligomers (dimers, tetramers, etc.). However, either a reduction in urea concentration or a complete removal of urea results in the polymerization of VEbeta and VEgamma dimers into very large oligomers. Mixtures of VEbeta and VEgamma also give rise to large oligomers. Under these conditions, VE proteins are visualized by transmission electron microscopy as aggregates of long fibrils, with each fibril composed of contiguous beads located periodically along the fibril. The relationship between the behavior of fish egg VE proteins and mouse ZP glycoproteins, as well as other ZP domain-containing proteins, is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号