首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25234篇
  免费   15525篇
  国内免费   3篇
  40762篇
  2023年   12篇
  2022年   85篇
  2021年   387篇
  2020年   2183篇
  2019年   3712篇
  2018年   3813篇
  2017年   4094篇
  2016年   4075篇
  2015年   3976篇
  2014年   3616篇
  2013年   4040篇
  2012年   1703篇
  2011年   1422篇
  2010年   3009篇
  2009年   1773篇
  2008年   642篇
  2007年   253篇
  2006年   225篇
  2005年   276篇
  2004年   256篇
  2003年   244篇
  2002年   234篇
  2001年   252篇
  2000年   187篇
  1999年   128篇
  1998年   13篇
  1997年   8篇
  1996年   7篇
  1995年   18篇
  1994年   11篇
  1993年   9篇
  1992年   11篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1988年   7篇
  1986年   3篇
  1985年   4篇
  1983年   3篇
  1980年   5篇
  1975年   2篇
  1973年   2篇
  1971年   3篇
  1959年   4篇
  1958年   3篇
  1957年   7篇
  1953年   2篇
  1952年   9篇
  1951年   3篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
71.
Accurately estimating infection prevalence is fundamental to the study of population health, disease dynamics, and infection risk factors. Prevalence is estimated as the proportion of infected individuals (“individual‐based estimation”), but is also estimated as the proportion of samples in which evidence of infection is detected (“anonymous estimation”). The latter method is often used when researchers lack information on individual host identity, which can occur during noninvasive sampling of wild populations or when the individual that produced a fecal sample is unknown. The goal of this study was to investigate biases in individual‐based versus anonymous prevalence estimation theoretically and to test whether mathematically derived predictions are evident in a comparative dataset of gastrointestinal helminth infections in nonhuman primates. Using a mathematical model, we predict that anonymous estimates of prevalence will be lower than individual‐based estimates when (a) samples from infected individuals do not always contain evidence of infection and/or (b) when false negatives occur. The mathematical model further predicts that no difference in bias should exist between anonymous estimation and individual‐based estimation when one sample is collected from each individual. Using data on helminth parasites of primates, we find that anonymous estimates of prevalence are significantly and substantially (12.17%) lower than individual‐based estimates of prevalence. We also observed that individual‐based estimates of prevalence from studies employing single sampling are on average 6.4% higher than anonymous estimates, suggesting a bias toward sampling infected individuals. We recommend that researchers use individual‐based study designs with repeated sampling of individuals to obtain the most accurate estimate of infection prevalence. Moreover, to ensure accurate interpretation of their results and to allow for prevalence estimates to be compared among studies, it is essential that authors explicitly describe their sampling designs and prevalence calculations in publications.  相似文献   
72.
73.
74.
Understanding genetic variation for complex traits in heterogeneous environments is a fundamental problem in biology. In this issue of Molecular Ecology, Fournier‐Level et al. ( 2013 ) analyse quantitative trait loci (QTL) influencing ecologically important phenotypes in mapping populations of Arabidopsis thaliana grown in four habitats across its native European range. They used causal modelling to quantify the selective consequences of life history and morphological traits and QTL on components of fitness. They found phenology QTL colocalizing with known flowering time genes as well as novel loci. Most QTL influenced fitness via life history and size traits, rather than QTL having direct effects on fitness. Comparison of phenotypes among environments found no evidence for genetic trade‐offs for phenology or growth traits, but genetic trade‐offs for fitness resulted because flowering time had opposite fitness effects in different environments. These changes in QTL effects and selective consequences may maintain genetic variation among populations.  相似文献   
75.
Misexpression Suppressor of Ras 4 (MESR4), a plant homeodomain (PHD) finger protein with nine zinc‐finger motifs has been implicated in various biological processes including the regulation of fat storage and innate immunity in Drosophila. However, the role of MESR4 in the context of development remains unclear. Here it is shown that MESR4 is a nuclear protein essential for embryonic development. Immunostaining of polytene chromosomes using anti‐MESR4 antibody revealed that MESR4 binds to numerous bands along the chromosome arms. The most intense signal was detected at the 39E‐F region, which is known to contain the histone gene cluster. P‐element insertions in the MESR4 locus, which were homozygous lethal during embryogenesis with defects in ventral ectoderm formation and head encapsulation was identified. In the mutant embryos, expression of Fasciclin 3 (Fas3), an EGFR signal target gene was greatly reduced, and the level of EGFR signal‐dependent double phosphorylated ERK (dp‐ERK) remained low. However, in the context of wing vein formation, genetic interaction experiments suggested that MESR4 is involved in the EGFR signaling as a negative regulator. These results suggested that MESR4 is a novel chromatin‐binding protein required for proper expression of genes including those regulated by the EGFR signaling pathway during development. genesis 53:701–708, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
76.
The objectives of this study were to determine rDNA sequences of the most common Dinophysis species in Scandinavian waters and to resolve their phylogenetic relationships within the genus and to other dinoflagellates. A third aim was to examine the intraspecific variation in D. acuminata and D. norvegica, because these two species are highly variable in both morphology and toxicity. We obtained nucleotide sequences of coding (small subunit [SSU], partial large subunit [LSU], 5.8S) and noncoding (internal transcribed spacer [ITS]1, ITS2) parts of the rRNA operon by PCR amplification of one or two Dinophysis cells isolated from natural water samples. The three photosynthetic species D. acuminata, D. acuta, and D. norvegica differed in only 5 to 8 of 1802 base pairs (bp) within the SSU rRNA gene. The nonphotosynthetic D. rotundata (synonym Phalacroma rotundatum[Claparède et Lachmann] Kofoid et Michener), however, differed in approximately 55 bp compared with the three photosynthetic species. In the D1 and D2 domains of LSU rDNA, the phototrophic species differed among themselves by 3 to 12 of 733 bp, whereas they differed from D. rotundata by more than 100 bp. This supports the distinction between Dinophysis and Phalacroma. In the phylogenetic analyses based on SSU rDNA, all Dinophysis species were grouped into a common clade in which D. rotundata diverged first. The results indicate an early divergence of Dinophysis within the Dinophyta. The LSU phylogenetic analyses, including 4 new and 11 Dinophysis sequences from EMBL, identified two major clades within the phototrophic species. Little or no intraspecific genetic variation was found in the ITS1–ITS2 region of single cells of D. norvegica and D. acuminata from Norway, but the delineation between these two species was not always clear.  相似文献   
77.
78.
79.
Background: Colonization of the gastric mucosa by Helicobacter pylori is one of the most important causes of acute and chronic gastric pathologies in humans. Achieving the growth of H. pylori in liquid media is of great importance in the development of clinical studies. In this study, we developed a sequential optimization strategy based on statistical models to improve the conditions of liquid culture of H. pylori. Materials and Methods: Four statistical models were sequentially used. First, a Box‐Behnken design was used to select the best process conditions (shaking speed, inoculum concentration, and final volume of culture). Secondly, a general factorial design was used to evaluate the influence of adding gel blocks or gel beads (shape and composition). Then a D‐optimal reduce design was carried out to allow the selection of the most influential factors in increasing the cell concentration (culture media components). Finally, another Box‐Behnken design was used to optimize the concentration of the culture media components previously selected. Results: After 12 hours of liquid culture a concentration of 25 × 108 cells per mL (9.4 log10 cells per mL) of H. pylori was obtained, compared with a predicted 32 × 108 (9.5 log10 cells per mL), which means between 1 and 5 log10 units higher than some previous reports. Conclusions: The sequential statistical approach increased the planktonic H. pylori cell culture. The final culture media and conditions were: Brain Heart Infusion, blood agarose (1.5% w/v), lamb’s blood (3.18% v/v), DENT (0.11% v/v), and Vitox (0.52% v/v) at 60 rpm and 37 °C with filtered CO2 (5% v/v) bubbled directly into the culture media in a final volume of 76.22 mL.  相似文献   
80.
Tandem MS (MS2) quantification using the series of N‐ and C‐terminal fragment ion pairs generated from isobaric‐labelled peptides was recently considered an accurate strategy in quantitative proteomics. However, the presence of multiplexed terminal fragment ion in MS2 spectra may reduce the efficiency of peptide identification, resulting in lower identification scores or even incorrect assignments. To address this issue, we developed a quantitative software tool, denoted isobaric tandem MS quantification (ITMSQ), to improve N‐ and C‐terminal fragment ion pairs based isobaric MS2 quantification. A spectrum splitting module was designed to separate the MS2 spectra from different samples, increasing the accuracy of both identification and quantification. ITMSQ offers a convenient interface through which parameters can be changed along with the labelling method, and the result files and all of the intermediate files can be exported. We performed an analysis of in vivo terminal amino acid labelling labelled HeLa samples and found that the numbers of quantified proteins and peptides increased by 13.64 and 27.52% after spectrum splitting, respectively. In conclusion, ITMSQ provides an accurate and reliable quantitative solutionfor N‐ and C‐terminal fragment ion pairs based isobaric MS2 quantitative methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号