首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   0篇
  2013年   7篇
  2012年   5篇
  2011年   5篇
  2010年   19篇
  2009年   7篇
  2008年   4篇
  2007年   8篇
  2006年   7篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  1999年   2篇
  1998年   4篇
  1997年   9篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1973年   5篇
  1972年   5篇
  1971年   3篇
  1970年   2篇
  1969年   2篇
  1968年   3篇
  1967年   1篇
  1966年   4篇
  1965年   1篇
  1957年   1篇
  1953年   3篇
  1952年   1篇
  1948年   1篇
  1935年   1篇
  1930年   1篇
  1927年   1篇
  1913年   1篇
  1909年   1篇
排序方式: 共有181条查询结果,搜索用时 31 毫秒
31.
SYNOPSIS. The fine structure of Trichomonas gallinae has been examined by electron microscopy and correlated with previous light microscope observations. A composite diagram of the flagellate, derived from both types of examination, is presented. Details of relationships of various mastigont organelles are documented by electron micrographs. The extent of the pelta and its connection to the capitulum of the axostyle have been determined. Four types of kinetosome rootlets have been described. One consists of superficial “filaments” radiating from each of the 9 triplet microtubules of kinetosomes #1, #2 and #3. A 2nd type of rootlet structure is represented by single comma-shaped filaments emerging clockwise from kinetosomes #1 and #3. The filament from kinetosome #1 has a periodic structure similar to that of the marginal lamella with which it is believed to connect. A 3rd type of rootlet emerges from kinetosome #2 as a sheet of about 9 filaments which traverse a sigmoid course and terminate on the inner surface of the microtubules of the pelta near the peltar-axostylar junction. The 4th set of structures consists of the costa and parabasal filaments. These structures have major periodicities of similar dimension but have readily differentiable repeating units. The costa appears to originate at the kinetosome of the recurrent flagellum, but its origin is also contiguous with that of parabasal filament 2 which has some continuity with kinetosomes #2 and #3. Parabasal filament 1, on the other hand, arises solely from or near kinetosome #2. Occasional observations of a costa and a parabasal filament in juxtaposition over a great part of their length has led to the suggestion that the parabasal filament may play a role in the development of the costa. Periodic and filamentous structures have been observed in paraxostylar and paracostal granules and in nearby cytoplasm. Their possible role in providing substance for the developing axostyle and the costa is discussed. The results are discussed in the light of available information pertaining to structure of various trichomonad species as revealed by light and electron microscopy.  相似文献   
32.
The Conservative morphology of hardshelled turtles has fostered the use of size relationships between epidermal scutes (scales) on the shell to differentiate between species and subspecies of many taxa. The size relationship of the six major pairs of plastral scutes were used to compare the four currently recognized species of the genus Clemmys with each other. as well as with the distantly related Graptemys barbouri using Jaccard Coefficients. Shannon-Weiner diversity indices, and multivariate analysis. Results were concordant among the three techniques used and confirm our prediction that plastral morphology varies little among closely related species and widely among distantly related taxa. Clemmys muhlenbergii appears to he more different from Clemmys guttata than previously suggested. Analysis of plastral morphology shows promise as a taxonomic tool for turtle systematists.  相似文献   
33.
34.
The availability of nitrogen (N) is an important determinant of ecosystem and community dynamics for grasslands and savannas, influencing factors such as biomass productivity, plant and herbivore composition, and losses of N to waters and the atmosphere. To better understand the controls over N availability at landscape to regional scales, we quantified a range of plant and soil characteristics at each of 330 sites in three regions of South Africa: Kruger National Park (KNP), private game reserves adjacent to KNP (private protected areas – PPAs) and Hluhluwe‐iMfolozi Park (HiP). In comparing regions and sites within regions, grazing appeared to have a strong influence on N availability. Sites in the PPAs adjacent to KNP as well as sodic and alluvial sites in general typically had the highest N availability. The high N availability of these sites was not generally associated with greater potential N mineralization, but instead with less grass biomass and more forb biomass that indicated greater grazing pressure. Whereas sodic sites had a long history of high N availability as evidenced by their high soil δ15N, the greater N availability in the PPAs over the two parks appeared to be relatively recent. Grazer biomass, average potential mineralization rates and grass biomass for HiP were greater than KNP, yet there were no differences in N availability as indexed by soil and foliar δ15N between sites in the two parks. Although the short‐term increase in N availability in PPAs is not necessarily deleterious, it is uncertain whether current productivity levels in those ecosystems is sustainable. With differences in management causing herbivore biomass to be 150% greater in the PPAs than the adjacent KNP, changes in plant communities and nitrogen cycling might lead to long‐term degradation of these ecosystems, their ability to sustain herbivore populations, and also serve as an economic resource for the region.  相似文献   
35.
1. Palaeolimnology and contemporary ecology are complementary disciplines but are rarely combined. By reviewing the literature and using a case study, we show how linking the timescales of these approaches affords a powerful means of understanding ecological change in shallow lakes. 2. Recently, palaeolimnology has largely been pre‐occupied with developing transfer functions which use surface sediment‐lake environment datasets to reconstruct a single environmental variable. Such models ignore complex controls over biological structure and can be prone to considerable error in prediction. Furthermore, by reducing species assemblage data to a series of numbers, transfer functions neglect valuable ecological information on species’ seasonality, habitat structure and food web interactions. These elements can be readily extracted from palaeolimnological data with the interpretive assistance of contemporary experiments and surveys. For example, for one shallow lake, we show how it is possible to infer long‐term seasonality change from plant macrofossil and fossil diatom data with the assistance of seasonal datasets on macrophyte and algal dynamics. 3. On the other hand, theories on shallow lake functioning have generally been developed from short‐term (<1–15 years) studies as opposed to palaeo‐data that cover the actual timescales (decades–centuries) of shallow lake response to stressors such as eutrophication and climate change. Palaeolimnological techniques can track long‐term dynamics in lakes whilst smoothing out short‐term variability and thus provide a unique and important means of not only developing ecological theories, but of testing them. 4. By combining contemporary ecology and palaeolimnology, it should be possible to gain a fuller understanding of changing ecological patterns and processes in shallow lakes on multiple timescales.  相似文献   
36.
1. Eutrophication has a profound effect on the biological structure and function of shallow lakes, altering the composition and abundance of submerged macrophyte and fish assemblages. Relatively little is known, however, about decadal to centennial‐scale change in these important aspects of shallow lake ecology. 2. Established palaeolimnological inference models are limited to reconstructing a single variable. As macrophyte and zooplanktivorous fish abundance exert dual and interacting controls on cladoceran assemblages a single variable inference model may contain significant error. To obviate this problem, we applied a new cladoceran‐based multivariate regression tree (MRT) model to cladoceran subfossil assemblages from dated cores from a small shallow lake (Felbrigg Lake, U.K.) to assess long‐term change in fish and submerged macrophyte abundance. Plant macrofossil, chironomid and mollusc subfossil assemblages were also analysed to track changes in biological structure and function and to evaluate the inferences of the MRT model. 3. Over the 200+ year period covered by the sediment cores, there was good agreement in the timing and nature of ecological change reflected by the plant macrofossil, mollusc, chironomid and cladoceran data. The sediment sequence was divided into three dated zones: c. 1797–1890, c. 1890–1954 and c. 1954–present. Prior to 1890 plant‐associated mollusc, cladoceran and chironomid assemblages indicated a species‐rich macrophyte community; a scenario confirmed by the plant macrofossil data. From c. 1890 to 1954 macrophyte‐associated species of all three invertebrate groups remained abundant but the proportion of pelagic cladocerans rose. Post‐1954 mollusc and chironomid assemblages changed to sediment associated detrital feeders and the proportion of pelagic cladoceran taxa increased further. 4. The cladoceran‐based MRT model indicated a long period of stability, c. 1790–1927, characterised by abundant submerged macrophytes and zooplanktivorous fish. From c. 1927 to 1980, the MRT model inferred a decline in zooplanktivorous fish density (ZF) but relative stability in August macrophyte abundance. From 1980 to 2000, an increase in zooplanktivorous fish was inferred tallying well with available data on the fish population (since the 1970s), which indicated extirpation of perch in the 1970s and a subsequent increase in the rudd population. The model inferred little change in August macrophyte abundance until post‐c. 1980 at which point it indicated a decline. The surface sediment assemblage was placed in MRT group A, where submerged plants are absent or very rare in late summer in good agreement with current conditions at the site. 5. The MRT model, applied here for the first time, appears to have successfully tracked changes in macrophyte abundance and ZF over the last 200 years at Felbrigg Lake. The inferences agreed with historical observations on the fish community and the supporting palaeolimnological data. Given that multiple structuring forces shape most biological communities, the application of a model capable of allowing for this represents a significant advance in palaeolimnology.  相似文献   
37.
Historical records suggest that the petrels of Round Island (near Mauritius, Indian Ocean) represent a recent, long‐distance colonization by species originating from the Atlantic and Pacific Oceans. The majority of petrels on Round Island appear most similar to Pterodroma arminjoniana, a species whose only other breeding locality is Trindade Island in the South Atlantic. Using nine microsatellite loci, patterns of genetic differentiation in petrels from Round and Trindade Islands were analysed. The two populations exhibit low but significant levels of differentiation in allele frequencies and estimates of migration rate between islands using genetic data are also low, supporting the hypothesis that these populations have recently separated but are now isolated from one another. A second population of petrels, most similar in appearance to the Pacific species P. neglecta, is also present on Round Island and observations suggest that the two petrel species are hybridizing. Vocalizations recorded on the island also suggest that hybrid birds may be present within the population. Data from microsatellite genotypes support this hypothesis and indicate that there may have been many generations of hybridization and back‐crossing between P. arminjoniana and P. neglecta on Round Island. Our results provide an insight into the processes of dispersal and the consequences of secondary contact in Procellariiformes.  相似文献   
38.
Over the past several decades, global warming has been linked to shifts in the distributions and abundances of species. In the southern North Sea, temperatures have increased in the last three decades and this will likely have consequences on the seasonality of marine organisms living in the area. Ctenophores such as Beroe gracilis and Pleurobrachia pileus could be particularly affected by changes in their own phenology and that of their prey, thus causing shifts in ecosystem function. Despite their global relevance and their potentially deleterious effect on the fishing industry, only a few long‐term records of ctenophore abundance exist, and most of these records are semiquantitative in nature. Therefore, our knowledge of the influence of environmental factors on their population development is presently very limited. In this study, the long‐term abundance dynamics of B. gracilis, P. pileus and their food calanoid copepods were analysed for a highly temporally resolved time series in the German Bight at Helgoland Roads. Special attention was focused on the response of these organisms to climate warming. Bayesian statistics showed that the phenology of the two ctenophores shifted in a step‐like mode in the year 1987/1988 to permanent earlier appearances. The seasonal change in the population blooms of P. pileus and B. gracilis correlated remarkably well with a step‐like increase in winter and spring sea surface temperatures of the southern North Sea. Possible explanations for the changes observed in these organisms include higher reproductive rates, increased winter survival rates or both. Interannual variations in ctenophore abundances correlated best with the interannual changes in spring temperatures, although the impact of temperature on B. gracilis appeared less pronounced. The changes in copepods abundance were not consistent with changes in P. pileus and B. gracilis. P. pileus showed longer periods of high abundance after the permanent seasonal advancement. These longer periods were correlated with a decline in the average autumn abundance of copepods. Changes in the phenology of these organisms raise the concerns on the declining state of fish stocks, which could potentially be exacerbated by gelatinous zooplankton outbreaks. These conditions may ultimately lead to trophic dead ends by channelling the flow of energy away from higher trophic levels.  相似文献   
39.
We tested the hypothesis that CO2 supersaturation along the aquatic conduit over Sweden can be explained by processes other than aquatic respiration. A first generalized‐additive model (GAM) analysis evaluating the relationships between single water chemistry variables and pCO2 in lakes and streams revealed that water chemistry variables typical for groundwater input, e.g., dissolved silicate (DSi) and Mg2+ had explanatory power similar to total organic carbon (TOC). Further GAM analyses on various lake size classes and stream orders corroborated the slightly higher explanatory power for DSi in lakes and Mg2+ for streams compared with TOC. Both DSi and TOC explained 22–46% of the pCO2 variability in various lake classes (0.01–>100 km2) and Mg2+ and TOC explained 11–41% of the pCO2 variability in the various stream orders. This suggests that aquatic pCO2 has a strong groundwater signature. Terrestrial respiration is a significant source of the observed supersaturation and we may assume that both terrestrial respiration and aquatic respiration contributed equally to pCO2 efflux. pCO2 and TOC concentrations decreased with lake size suggesting that the longer water residence time allow greater equilibration of CO2 with the atmosphere and in‐lake mineralization of TOC. For streams, we observed a decreasing trend in pCO2 with stream orders between 3 and 6. We calculated the total CO2 efflux from all Swedish lakes and streams to be 2.58 Tg C yr?1. Our analyses also demonstrated that 0.70 Tg C yr?1 are exported to the ocean by Swedish watersheds as HCO3? and CO32? of which about 0.56 Tg C yr?1 is also a residual from terrestrial respiration and constitute a long‐term sink for atmospheric CO2. Taking all dissolved inorganic carbon (DIC) fluxes along the aquatic conduit into account will lower the estimated net ecosystem C exchange (NEE) by 2.02 Tg C yr?1, which corresponds to 10% of the NEE in Sweden.  相似文献   
40.
Mosquito density, biting rate and cage size effects on repellent tests   总被引:1,自引:0,他引:1  
Mosquito biting rates and the mean duration of protection (in hours) from bites (MDPB) of Aedes aegypti and Anopheles quadrimaculatus , using the repellent 'deet' ( N , N -diethyl-3-methylbenzamide) on a 50 cm2 area of healthy human skin, were observed in small (27 l), medium (≈65 l) and large (125 l) cages containing low, medium or high densities of mosquitoes: respectively, 640, 128 or 49 cm3 of cage volume per female. At the initial treatment rate of ≈ 0.4 μl/cm2 (1 ml of 25% deet in ethanol on 650 cm2 of skin), the MDPB for deet against Ae. aegypti ranged from 4.5 to 6.5 h and was significantly less (5.0 ± 0.8 h) in large cages compared with medium (6.2 ± 0.9 h) and small (6.2 ± 0.8 h) cages, regardless of the density. Against An. quadrimaculatus the MDPB for deet 0.4 μl/cm2 was 1.5–8.0 h, less in small (3.7 ± 2.3 h) and large (2.2 ± 1.1 h) cages at medium (3.7 ± 2.3 h) and high (2.5 ± 1.7 h) mosquito densities, and was longest in medium cages (6.2 ± 2.6 h) at low mosquito densities (5.8 ± 2.8 h). With equinoxial photoperiodicity (light on 06.00–18.00 hours) the biting rate was influenced by the time of observation (08.00, 12.00, 16.00 hours) for Ae. aegypti but not for An. quadrimaculatus. For both species, the biting rate was inversely proportional to mosquito density and the MDPB. The shortest MDPBs were obtained in large cages with high densities of mosquitoes and longest protection times occurred in medium sized cages with low mosquito densities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号