首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   7篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2006年   3篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  1999年   2篇
  1993年   1篇
  1985年   1篇
  1982年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1958年   3篇
  1956年   1篇
  1953年   1篇
  1952年   4篇
  1951年   1篇
  1949年   2篇
排序方式: 共有49条查询结果,搜索用时 500 毫秒
21.
22.
1. Microbial symbionts can play an important role in defending their insect hosts against natural enemies. However, researchers have little idea how the presence of such protective symbionts impacts food web interactions and species diversity. 2. This study investigated the effects of a protective symbiont (Hamiltonella defensa) in pea aphids (Acyrthosiphon pisum) on hyperparasitoids, which are a trophic level above the natural enemy target of the symbiont (primary parasitoids). 3. Pea aphids, with and without their natural infections of H. defensa, were exposed first to a primary parasitoid against which the symbiont provides partial protection (either Aphidius ervi or Aphelinus abdominalis), and second to a hyperparasitoid known to attack the primary parasitoid species. 4. It was found that hyperparasitoid hatch rate was substantially affected by the presence of the symbiont. This effect appears to be entirely due to the removal of potential hosts by the action of the symbiont: there was no additional benefit or cost experienced by the hyperparasitoids in response to symbiont presence. The results were similar across the two different aphid–parasitoid–hyperparasitoid interactions we studied. 5. It is concluded that protective symbionts can have an important cascading effect on multiple trophic levels by altering the success of natural enemies, but that there is no evidence for more complex interactions. These findings demonstrate that the potential influence of protective symbionts on the wider community should be considered in future food web studies.  相似文献   
23.
 Aims Desertification results in ecological and biological diminution of the earth, and can happen naturally or cause by anthropogenic activities. This process especially affects arid and semi-arid regions, such as the Isfahan region, where the spread of desertification is reaching critical proportions. The aim of this study is to use remotely sensed data to review the trend of desertification in the northern of Isfahan, Iran. Methods Multi-temporal images were employed to evaluate the trend of desertification, specifically the TM and ETM+ data of September, 1990 and September, 2001. Geometric and radiometric corrections were applied to each image prior to image processing and supervised classification, and vegetation indices were applied to produce a land use map of each image in nine classes. The land use classification s in the two map images were compared and changes between land use classes were detected over the 11 year period using a fuzzy and post-classification technique. Important findings The maps and their comparison with false color composite images showed the differences efficiently. With the fuzzy and post-classification method the land use changes were sited on the map. Fuzzy confirmed 53% changed area and 47% unchanged areas in the study region. The results verify the desertification expansion in the study areas. Because of poor land management, agricultural lands converted to desert and abandoned areas, and some marginal pasture lands had to be changed to agricultural land which are desertification spreading according to United Nations Conference on Desertification (UNCOD). Also farmland and pastures have been converted to urban and industrial areas, and the rangelands have been spoiled due to opencast mine excavations. With the mine margins eroding as well as their debris accumulating on the pasture lands, desertification has become worse. Three areas of less-elevated mountains have remained unchanged. This study confirmed that the anthropogenic activities accelerated the desertification process and severely endangered the remaining areas.  相似文献   
24.
25.
The DNA binding of amphiphilic iron(III) 2,17‐bis(sulfonato)‐5,10,15‐tris(pentafluorophenyl)corrole complex (Fe–SC) was studied using spectroscopic methods and viscosity measurements. Its nuclease‐like activity was examined by using pBR322 DNA as a target. The interaction of Fe–SC with human serum albumin (HSA) in vitro was also examined using multispectroscopic techniques. Experimental results revealed that Fe–SC binds to ct‐DNA via an outside binding mode with a binding constant of 1.25 × 104 M–1. This iron corrole also displays good activity during oxidative DNA cleavage by hydrogen peroxide or tert‐butyl hydroperoxide oxidants, and high‐valent (oxo)iron(V,VI) corrole intermediates may play an important role in DNA cleavage. Fe–SC exhibits much stronger binding affinity to site II than site I of HSA, indicating a selective binding tendency to HSA site II. The HSA conformational change induced by Fe–SC was confirmed by UV/Vis and CD spectroscopy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
26.
ABSTRACT: BACKGROUND: End-stage renal disease (ESRD) patients treated with renal replacement therapy (RRT) have premature immunologically aged T cells which may underlie uremia-associated immune dysfunction. The aim of this study was to investigate whether uremia was able to induce premature ageing of the T cell compartment. For this purpose, we examined the degree of premature immunological T cell ageing by examining the T cell differentiation status, thymic output via T cell receptor excision circle (TREC) content and proliferative history via relative telomere length in ESRD patients not on RRT. RESULTS: Compared to healthy controls, these patients already had a lower TREC content and an increased T cell differentiation accompanied by shorter telomeres. RRT was able to enhance CD8+ T cell differentiation and to reduce CD8+ T cell telomere length in young dialysis patients. An increased differentiation status of memory CD4+ T cells was also noted in young dialysis patients. CONCLUSION: Based on these results we can conclude that uremia already causes premature immunological ageing of the T cell system and RRT further increases immunological ageing of the CD8+ T cell compartment in particular in young ESRD patients.  相似文献   
27.
28.
29.
α-Synuclein becomes misfolded and aggregated upon damage by various factors, for example, by reactive oxygen species. These aggregated forms have been proposed to have differential toxicities and their interaction with mitochondria may cause dysfunction within this organelle that contributes to the pathogenesis of Parkinson''s disease (PD). In particular, the association of α-synuclein with mitochondria occurs through interaction with mitochondrial complex I and importantly defects of this protein have been linked to the pathogenesis of PD. Therefore, we investigated the relationship between aggregated α-synuclein and mitochondrial dysfunction, and the consequences of this interaction on cell survival. To do this, we studied the effects of α-synuclein on cybrid cell lines harbouring mutations in either mitochondrial complex I or IV. We found that aggregated α-synuclein inhibited mitochondrial complex I in control and complex IV-deficient cells. However, when aggregated α-synuclein was applied to complex I-deficient cells, there was no additional inhibition of mitochondrial function or increase in cell death. This would suggest that as complex I-deficient cells have already adapted to their mitochondrial defect, the subsequent toxic effects of α-synuclein are reduced.The pathological hallmark of Parkinson''s disease (PD) is the presence of α-synuclein aggregates, particularly within the substantia nigra (SN). These aggregations take the form of intracellular Lewy bodies, and also neuritic aggregations. However, both the effect of these inclusions on neuronal survival and the toxicity of different forms of α-synuclein are still debated. To aggregate α-synuclein must undergo a conformational change, however, the mechanism behind this change and subsequent aggregation in PD remains to be determined.Mutations within the α-synuclein gene (SNCA (MIM 163890)) were the first to be associated with autosomal dominant PD, while more recently genome-wide association studies have suggested that single-nucleotide polymorphisms in this gene are important for sporadic PD. A widely expressed protein α-synuclein is important for synaptic vesicle recycling and the modulation of dopamine transmission within SN neurons.1, 2, 3, 4, 5, 6, 7, 8 It interacts with curved cellular membranes including those of mitochondria suggesting a possible mode of its toxicity,9, 10, 11 and can be imported into mitochondria in an energy-dependent manner.9 The accumulation of α-synuclein within mitochondria leads to complex I impairment, decreased mitochondrial membrane potential (ΔΨm) and increased reactive oxygen species (ROS) production. The occurrence of these changes is also dependent on calcium homoeostasis.9, 12, 13Mitochondrial dysfunction has also been heavily implicated in the pathogenesis of PD. Early studies showed a decrease in mitochondrial complex I in the SN of PD patients and studies involving the inhibition of this complex replicate many of the features of this disease. In addition, SN neurons show high levels of mitochondrial DNA deletions in old age,14, 15 which lead to respiratory deficiency, and the environment of the SN is believed to be particularly oxidative due to a number of processes, including the metabolism of dopamine. More recently a number of genes known to cause autosomal recessive forms of PD have been shown to encode proteins with functions associated with mitochondrial turnover (Parkin/Pink1 (MIM 602544, MIM 608309)) or oxidative stress (DJ-1 (MIM 602533)). However, the link between these two processes and the loss of dopaminergic neurons in PD remains to be elucidated.Several hypotheses have been suggested for what might cause α-synuclein to undergo the conformational change into more aggregate prone forms, from oxidative stress to gene mutations. Furthermore, the accumulation of mitochondrial DNA (mtDNA) mutations and dysfunctional mitochondria with advancing age are likely to have an effect on oxidative stress levels within the SN, which might contribute further to the misfolding and accumulation of this protein. Numerous studies have used rotenone and other toxins to induce mitochondrial dysfunction and monitor the accumulation of α-synuclein, despite the wealth of information that these studies provide they often do not reflect the subtleties of the slow accumulation of mitochondrial dysfunction within ageing SN neurons.Therefore, we investigated the relationship between mitochondria and aggregated α-synuclein, focussing on how these forms affect neurons with and without mitochondrial dysfunction. We wanted to understand how aggregated α-synuclein impacted on the survival of cells with mitochondrial dysfunction, to enable a deeper understanding of the effect of these two processes on neuronal survival. To investigate this we used cells with mutations in and partial inhibition of complexes I and IV.  相似文献   
30.
The structure of pseudorabies virus (PRV) capsids isolated from the nucleus of infected cells and from PRV virions was determined by cryo-electron microscopy (cryo-EM) and compared to herpes simplex virus type 1 (HSV-1) capsids. PRV capsid structures closely resemble those of HSV-1, including distribution of the capsid vertex specific component (CVSC) of HSV-1, which is a heterodimer of the pUL17 and pUL25 proteins. Occupancy of CVSC on all PRV capsids is near 100%, compared to ~ 50% reported for HSV-1 C-capsids and 25% or less that we measure for HSV-1 A- and B-capsids. A PRV mutant lacking pUL25 does not produce C-capsids and lacks visible CVSC density in the cryo-EM-based reconstruction. A reconstruction of PRV capsids in which green fluorescent protein was fused within the N-terminus of pUL25 confirmed previous studies with a similar HSV-1 capsid mutant localizing pUL25 to the CVSC density region that is distal to the penton. However, comparison of the CVSC density in a 9-Å-resolution PRV C-capsid map with the available crystal structure of HSV-1 pUL25 failed to find a satisfactory fit, suggesting either a different fold for PRV pUL25 or a capsid-bound conformation for pUL25 that does not match the X-ray model determined from protein crystallized in solution. The PRV capsid imaged within virions closely resembles C-capsids with the addition of weak but significant density shrouding the pentons that we attribute to tegument proteins. Our results demonstrate significant structure conservation between the PRV and HSV capsids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号