首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2124篇
  免费   148篇
  国内免费   9篇
  2024年   4篇
  2023年   18篇
  2022年   38篇
  2021年   74篇
  2020年   50篇
  2019年   58篇
  2018年   64篇
  2017年   55篇
  2016年   94篇
  2015年   121篇
  2014年   124篇
  2013年   181篇
  2012年   148篇
  2011年   167篇
  2010年   99篇
  2009年   101篇
  2008年   112篇
  2007年   116篇
  2006年   96篇
  2005年   81篇
  2004年   54篇
  2003年   54篇
  2002年   47篇
  2001年   42篇
  2000年   33篇
  1999年   35篇
  1998年   18篇
  1997年   12篇
  1996年   14篇
  1995年   10篇
  1994年   15篇
  1993年   10篇
  1992年   16篇
  1991年   6篇
  1990年   9篇
  1989年   12篇
  1988年   7篇
  1987年   5篇
  1986年   5篇
  1985年   10篇
  1983年   6篇
  1982年   4篇
  1981年   6篇
  1979年   6篇
  1978年   7篇
  1977年   6篇
  1976年   3篇
  1975年   5篇
  1974年   6篇
  1972年   3篇
排序方式: 共有2281条查询结果,搜索用时 46 毫秒
991.
Leishmania infantum cytosolic tryparedoxin (LiTXN1) can be regarded as a potential candidate for drug targeting. This redox active molecule, which belongs to the thioredoxin superfamily, is one constituent of the hydroperoxide elimination cascade in L. infantum and may also be involved in other cellular processes such as DNA synthesis or host-parasite interaction. In order to validate LiTXN1 as a drug target we have employed a gene replacement strategy. We observed that substitution of both chromosomal LiTXN1 alleles was only possible upon parasite complementation with an episomal copy of the gene. Furthermore, contrary to control parasites carrying the empty vector, both the insect and the mammalian stages of L. infantum retained the episomal copy of LiTXN1 in the absence of drug pressure. These results confirm the essentiality of LiTXN1 throughout the life cycle of the parasite, namely in the disease-causing amastigote stage. In addition, the data obtained showed that disruption of one allele of this gene leads only to a 25% reduction in the expression of LiTXN1. Even though this does not affect promastigote growth and susceptibility to hydrogen peroxide, ex vivo infection assays suggest that wild-type levels of LiTXN1 are required for optimal L. infantum virulence.  相似文献   
992.

Background and Aims

The occurrence of nectaries in fruits is restricted to a minority of plant families and consistent reports of their occurrence are not found associated with Fabaceae, mainly showing cellular details. The present study aims to describe the anatomical organization and ultrastructure of the pericarpial nectaries (PNs) in Erythrina speciosa, a bird-pollinated species, discussing functional aspects of these unusual structures.

Methods

Samples of floral buds, ovaries of flowers at anthesis and fruits at several developmental stages were fixed and processed by the usual methods for studies using light, and scanning and transmission electron microscopy. Nectar samples collected by filter paper wicks were subjected to chemical analysis using thin-layer chromatography.

Key Results

The PNs are distributed in isolation on the exocarp. Each PN is represented by a single hyaline trichome that consists of a basal cell at epidermal level, stalk cell(s) and a small secretory multicellular head. The apical stalk cell shows inner periclinal and anticlinal walls impregnated by lipids and lignin and has dense cytoplasm with a prevalence of mitochondria and endoplasmic reticulum. The secretory cells show voluminous nuclei and dense cytoplasm, which predominantly has dictyosomes, rough endoplasmic reticulum, plastids, mitochondria and free ribosomes. At the secretory stage the periplasmic space is prominent and contains secretion residues. Tests for sugar indicate the presence of non-reducing sugars in the secretory cells. Nectar samples from PNs contained sucrose, glucose and fructose.

Conclusions

The secretory stage of these PNs extends until fruit maturation and evidence suggests that the energetic source of nectar production is based on pericarp photosynthesis. Patrolling ants were seen foraging on fruits during all stages of fruit development, which suggests that the PNs mediate a symbiotic relationship between ants and plant, similar to the common role of many extrafloral nectaries.  相似文献   
993.
Viral manipulation of the transduction pathways associated with key cellular functions such as actin remodeling, microtubule stabilization, and survival may favor a productive viral infection. Here we show that consistent with the vaccinia virus (VACV) and cowpox virus (CPXV) requirement for cytoskeleton alterations early during the infection cycle, PBK/Akt was phosphorylated at S473 [Akt(S473-P)], a modification associated with the mammalian target of rapamycin complex 2 (mTORC2), which was paralleled by phosphorylation at T308 [Akt(T308-P)] by PI3K/PDK1, which is required for host survival. Notably, while VACV stimulated Akt(S473-P/T308-P) at early (1 h postinfection [p.i.]) and late (24 h p.i.) times during the infective cycle, CPXV stimulated Akt at early times only. Pharmacological and genetic inhibition of PI3K (LY294002) or Akt (Akt-X and a dominant-negative form of Akt-K179M) resulted in a significant decline in virus yield (from 80% to ≥90%). This decline was secondary to the inhibition of late viral gene expression, which in turn led to an arrest of virion morphogenesis at the immature-virion stage of the viral growth cycle. Furthermore, the cleavage of both caspase-3 and poly(ADP-ribose) polymerase and terminal deoxynucleotidyl transferase-mediated deoxyuridine nick end labeling assays confirmed that permissive, spontaneously immortalized cells such as A31 cells and mouse embryonic fibroblasts (MEFs) underwent apoptosis upon orthopoxvirus infection plus LY294002 treatment. Thus, in A31 cells and MEFs, early viral receptor-mediated signals transmitted via the PI3K/Akt pathway are required and precede the expression of viral antiapoptotic genes. Additionally, the inhibition of these signals resulted in the apoptosis of the infected cells and a significant decline in viral titers.The family Poxviridae is a family of large, linear, double-stranded DNA viruses that carry out their entire life cycle within the cytoplasmic compartment of infected cells. Vaccinia virus (VACV) is a prototypical member of the genus Orthopoxvirus, which also includes the closely related cowpox virus (CPXV) (12, 52). The genomes of these viruses are approximately 200 kbp in length, with a coding capacity of approximately 200 genes. The genes involved in virus-host interactions are situated at both ends of the genome and are associated with the evasion of host immune defenses (1). These evasion mechanisms operate mainly extracellularly. For example, the secretion of soluble cytokine and chemokine receptor homologues blocks the receptor recognition by intercepting the cognate cytokine/chemokine in the extracellular environment. This mechanism facilitates viral attachment and entry into cells (1, 70). Therefore, decoy receptors for alpha interferon (IFN-α), IFN-β, IFN-γ, and tumor necrosis factor alpha play an important immunomodulatory role by affecting both the host antiviral and apoptotic responses.To counteract the host proapoptotic response, poxviruses have developed a number of antiapoptotic strategies, including the inhibition of apoptotic signals triggered by the extrinsic pathway (those mediated by death receptors such as tumor necrosis factor and Fas ligand) or the intrinsic pathway (mediated by the mitochondria and triggered upon viral infection) (1, 25, 70, 74). Many studies previously identified viral inhibitors that block specific steps of the intrinsic pathway. These include the VACV-encoded E3L, F1L, and N1L genes and the myxoma virus (MYXV)-encoded M11L gene, which block cytochrome c release (14, 20, 34, 39, 45, 75, 90), and the CPXV-encoded cytokine response modifier gene (CrmA) as well as the VACV-encoded SPI-2 gene, which inhibits both caspase-1 and caspase-8 (25, 58, 61, 74).An emerging body of evidence has also highlighted the pivotal role played by intracellular signaling pathways in Orthopoxvirus biology (18, 48, 92). We and others have shown that poxvirus manipulation of signaling pathways can be virus specific. For example, while both VACV and CPXV stimulate the MEK/extracellular signal-regulated kinase (ERK)/EGR-1 pathway during a substantial length of time of their infective cycle, the pathway is required only for VACV replication, whereas its role in CPXV biology has yet to be identified (71). MYXV, a rabbit-specific poxvirus, also activates the MEK/ERK pathway in a mouse model of poxvirus-host interactions. However, this stimulation led to the expression of IFN-β, which consequently blocked virus replication and possibly explains why MYXV has such a restricted host range (87).Another signaling molecule associated with viral replication is Akt kinase (also known as protein kinase B). The MYXV host range factor M-T5 is able to reprogram the intracellular environment, thereby increasing human tumor cell permissiveness to viral replication, which is directly associated with levels of phosphorylated Akt (88). In addition, M-T5 is functionally replaced by the host phosphatidylinositol 3-kinase (PI3K) enhancer A protein (92).The transmission of intracellular signals mediated by the serine/threonine kinase Akt to downstream molecules in response to diverse stimuli such as growth factors, insulin, and hormones is dependent upon the phosphorylation of serine 473 (S473-P) and threonine 308 (T308-P). This phosphorylation is mediated by mammalian target of rapamycin complex 2 (mTORC2) and phosphoinositide-dependent protein kinase 1 (PDK1), which act as downstream effectors of the PI3K/Akt/mTORC1 pathway (2, 66). PI3Ks are a family of enzymes (classes I to III) that generate lipid second messengers by the phosphorylation of plasma membrane phosphoinositides. Class IA PI3Ks consist of a catalytic subunit (p110, comprising the three isoforms α, β, and δ) and an adaptor/regulatory subunit (p85, comprising the two isoforms α and β) (for a detailed review, see reference 80).The Akt family of proteins is comprised of the three isoforms α, β, and γ, which are composed of an N-terminal pleckstrin homology domain, a central catalytic domain, and a C-terminal hydrophobic domain. Akt is recruited to the plasma membrane through the binding of its pleckstrin homology domain to the phosphatidylinositol 3,4,5-triphosphate (PIP3), which is a product of PI3K that is anchored to the plasma membrane. PDK1 is also recruited to the plasma membrane through interactions with PIP3. As both PDK1 and Akt interact with PIP3, PDK1 colocalizes with Akt and activates it by phosphorylating threonine 308 (T308-P) (2, 66). Following its activation, Akt phosphorylates a number of downstream substrates such as caspase-9, BAD, glycogen synthase kinase 3β (GSK-3β), and FKHR. This leads to the suppression of apoptosis, cell growth, survival, and proliferation (11, 16, 56).Another downstream target of PI3K/Akt is mTOR, a serine/threonine kinase that plays a central role in the regulation of cell growth, proliferation, survival, and protein synthesis (26). mTOR kinase has recently been found to be associated with two functionally distinct complexes in mammalian cells, known as mTORC1 and mTORC2 (63, 66). Although these multiprotein complexes share molecules in common, distinct adaptor proteins are recruited into each complex: regulatory-associated protein of TOR (raptor) is recruited into mTORC1, while rapamycin-insensitive companion of TOR (rictor) is recruited into mTORC2 (33, 64). While mTORC1 controls cell growth and protein translation and has proven to be rapamycin sensitive, mTORC2 regulates the actin cytoskeleton and is assumed to be rapamycin insensitive, even though under conditions of prolonged exposure to the drug, it appears to inhibit mTORC2 assembly (29, 64, 65). Additionally, it has been demonstrated that mTORC2 regulates the activity of Akt through the phosphorylation of S473 (S473-P). S473-P appears to be required for the full activation of Akt, since S473-P has been shown to enhance the subsequent phosphorylation of T308 by PDK1 (66, 67, 94). Moreover, the phosphorylation of both S473 and T308 results in a four- to fivefold increase in Akt activity compared to T308-P by PDK1 alone (66).The PI3K/PDK1/Akt(T308)/mTORC1 pathway regulates vital cellular processes that are important for viral replication and propagation, including cell growth, proliferation, and protein translation. This pathway is particularly important for the replication of DNA viruses, as their replication is cap dependent. However, the Akt signaling pathway can also negatively affect viral replication. The stress response downstream of Akt signaling, including hypoxia and energy and amino acid depletion, inhibits mTORC1 (5, 9, 69). Therefore, DNA viruses must overcome these constraints to translate their mRNAs.Pharmacological disruption of the PI3K/Akt pathway with the specific PI3K inhibitor LY294002 (2-morpholino-8-phenyl-4H-1-benzopyran-4-one) (82) has been reported to not only increase the cleavage of downstream molecules associated with proapoptotic activity [e.g., poly(ADP-ribose) polymerase (PARP) and the executioner caspase-3] (38, 41) but also promote microtubule stabilization, actin filament remodeling/cell migration, and bleb formation/viral infectivity (10, 35, 49, 54, 59).Because the PI3K/Akt and PI3K/Akt/mTOR pathways influence diverse cellular functions and possibly a healthy antiviral response, usurping these pathways could support an increase in viral replication. In support of this, a number of reports have demonstrated that either the PI3K/Akt or the PI3K/Akt/mTOR pathway plays a role in the replication of many viruses including flavivirus (38), hepatitis C virus (27), human immunodeficiency virus type 1 (93), human papillomavirus (44, 96), respiratory syncytial virus (77), coxsackievirus B3 (19), Epstein-Barr virus (17, 50, 73), human cytomegalovirus (36, 37, 72), herpes simplex virus type 1 (7, 83), varicella-zoster virus (60), Kaposi''s sarcoma-associated herpesvirus (89), adenovirus (55), and simian virus 40 (SV40) (95). With this in mind, we also investigated whether the PI3K/Akt pathway played a pivotal role in orthopoxvirus biology. In this study, we show that the VACV- and CPXV-stimulated PI3K/Akt pathway not only contributes to the prevention of host-cell death but also plays a beneficial role in the viral replication cycle.  相似文献   
994.
This study assesses the antinociceptive effect induced by different dosages of topiramate (TP), an anticonvulsant drug that is orally administered in models of neuropathic pain and acute pain in rats and mice, respectively. Orally administered TP (80 mg/Kg) in mice causes antinociception in the first and second phases of a formalin test, while in doses of 20 and 40 mg/Kg it was only effective in the second phase. TP (80 mg/Kg, p.o) also exhibited antinociceptive action in the hot plate test, however, it did not have an effect in the capsaicin test in mice, nor in the model of neuropathic pain in diabetic rats. The antinociceptive effect caused by TP (80 mg/Kg, p.o) in the formalin test was reversed by prior treatment with naloxone (opioid antagonist), but not with glibenclamide (antagonist of the potassium channel), ondansetron (antagonist of the serotonin 5HT3 receptor) or cyproheptadine (antagonist of the serotonin 5HT2A receptor).The data show that TP has an important antinociceptive effect in the models of nociception induced by chemical (formalin) or thermal (hot plate) stimuli, and that the opioid system plays a part in the antinociceptive effect, as shown by formalin.  相似文献   
995.
Genetic variation was estimated in ten samples populations of Aedes aegypti from the Brazilian Amazon, by using a 380 bp fragment of the mitochocondrial NADH dehydrogenase subunit 4 (ND4) gene. A total of 123 individuals were analyzed, whereby 13 haplotypes were found. Mean genetic diversity was slightly high (h = 0.666 ± 0.029; π = 0.0115 ± 0.0010). Two AMOVA analyses indicated that most of the variation (~70%-72%) occurred within populations. The variation found among and between populations within the groups disclosed lower, but even so, highly significant values. F(ST) values were not significant in most of the comparisons, except for the samples from Pacaraima and Rio Branco. The isolation by distance (IBD) model was not significant (r = 0.2880; p = 0.097) when the samples from Pacaraima and Rio Branco were excluded from the analyses, this indicating that genetic distance is not related to geographic distance. This result may be explained either by passive dispersal patterns (via human migrations and commercial exchange) or be due to the recent expansion of this mosquito in the Brazilian Amazon. Phylogenetic relationship analysis showed two genetically distinct groups (lineages) within the Brazilian Amazon, each sharing haplotypes with populations from West Africa and Asia.  相似文献   
996.
997.
Anaerobic bacteria involved in the degradation of long-chain fatty acids (LCFA), in the presence of sulfate as electron acceptor, were studied by combined cultivation-dependent and molecular techniques. The bacterial diversity in four mesophilic sulfate-reducing enrichment cultures, growing on oleate (C18:1, unsaturated LCFA) or palmitate (C16:0, saturated LCFA), was studied by denaturing gradient gel electrophoresis (DGGE) profiling of polymerase chain reaction (PCR)-amplified 16S rRNA gene fragments. These enrichment cultures were started using methanogenic inocula in order to assess the competition between methanogenic communities and sulfate-reducing bacteria. Phylogenetic affiliation of rRNA gene sequences corresponding to predominant DGGE bands demonstrated that members of the Syntrophomonadaceae , together with sulfate reducers mainly belonging to the Desulfovibrionales and Syntrophobacteraceae groups, were present in the sulfate-reducing enrichment cultures. Subculturing of LCFA-degrading methanogenic cultures in the presence of sulfate resulted in the inhibition of methanogenesis and, after several transfers, archaea could no longer be detected by real-time PCR. Competition for hydrogen and acetate was therefore won by sulfate reducers, but acetogenic syntrophic bacteria were the only known LCFA-degrading organisms present after subculturing with sulfate. Principal component analysis of the DGGE profiles from methanogenic and sulfate-reducing oleate- and palmitate-enrichment cultures showed a greater influence of the substrate than the presence or absence of sulfate, indicating that the bacterial communities degrading LCFA in the absence/presence of sulfate are rather stable.  相似文献   
998.
The dissolution test for oral dosage forms has recently widened to a variety of special dosage forms such as suspensions. For class II drugs, such as nimesulide (NMS), this study is very important because formulation problems may compromise drug bioavailability. In the present work, tests with four brands of commercially available NMS (RA, TS, TB, and TC) have been performed in order to study their dissolution at different conditions. The suspensions have been characterized relatively to particle size, pH, and density besides NMS assay and the amount of drug in solution in the suspension vehicles. The dissolution study was conducted using the following media: simulated intestinal fluid, pH 6.8, containing polysorbate 80 (P80) or sodium lauryl sulfate (SLS); phosphate buffer, pH 7.4, with P80 and aqueous solution of SLS. Concerning the quantitative analysis, the UV–VIS spectrophotometry could have been used in substitution to high-performance liquid chromatography since the methodology had been adequately validated. The influence of the drug particle size distribution was significant on the dissolution profiles of NMS formulations, confirming to be a factor that should be strictly controlled in the development of oral suspensions.  相似文献   
999.
Aedes aegypti transmits etiologic agents of yellow fever and dengue. Vaccine for dengue virus is not available and vector control is essential to minimize dengue incidence. This report deals with the larvicidal activity of lectins isolated from Myracrodruon urundeuva bark (MuBL) and heartwood (MuHL). The lectins were isolated by ammonium sulphate treatment of crude extracts followed by chromatography on chitin. MuBL and MuHL were evaluated by electrophoresis under native (PAGE) and denaturing conditions (SDS-PAGE). Carbohydrate specificity of lectins was evaluated by hemagglutinating activity (HA) inhibition assay using N-acetyl-d-glucosamine and by affinity chromatography on N-acetyl-D-glucosamine immobilized in agarose gel. Larvicidal activity against A. aegypti was investigated with the extracts, salt fractions and isolated lectins. MuBL and MuHL were characterized by PAGE as basic proteins of molecular masses of 14.0 and 14.4 kDa, respectively. The interaction of lectins with N-acetylglucosamine was detected by inhibition of HA by monosaccharide and lectin adsorptions on N-acetyl-D-glucosamine matrix. All M. urundeuva preparations promoted larvae mortality. LC16, LC50 and LC84 values of 0.077, 0.125, 0.173 for MuBL and 0.03, 0.04 and 0.05 mg/mL for MuHL were obtained. To our knowledge this is the first report of larvicidal activity of lectins against A. aegypti.  相似文献   
1000.
RhoA controls changes in cell morphology and invasion associated with cancer phenotypes. Cell lines derived from melanoma tumors at varying stages revealed that RhoA is selectively activated in cells of metastatic origin. We describe a functional proteomics strategy to identify proteins regulated by RhoA and report a previously uncharacterized human protein, named “mediator of RhoA-dependent invasion (MRDI),” that is induced in metastatic cells by constitutive RhoA activation and promotes cell invasion. In human melanomas, MRDI localization correlated with stage, showing nuclear localization in nevi and early stage tumors and cytoplasmic localization with plasma membrane accentuation in late stage tumors. Consistent with its role in promoting cell invasion, MRDI localized to cell protrusions and leading edge membranes in cultured cells and was required for cell motility, tyrosine phosphorylation of focal adhesion kinase, and modulation of actin stress fibers. Unexpectedly MRDI had enzymatic function as an isomerase that converts the S-adenosylmethionine catabolite 5-methylribose 1-phosphate into 5-methylribulose 1-phosphate. The enzymatic function of MRDI was required for methionine salvage from S-adenosylmethionine but distinct from its function in cell invasion. Thus, mechanisms used by signal transduction pathways to control cell movement have evolved from proteins with ancient function in amino acid metabolism.Cutaneous malignant melanoma has doubled in incidence over the past 30 years. Stages involved in progression of melanocytes to melanoma based on clinical and histopathological features include nontumorigenic nevi, dysplastic or atypical nevi, primary radial growth phase and vertical growth phase melanoma, and metastatic melanoma (1). Metastatic melanomas are often resistant to treatment; therefore therapeutic strategies require a more complete understanding of molecular determinants of this disease, particularly those involved in the invasive phenotype (2).Rho GTPases control a wide range of cellular responses including cell movement, morphogenesis, and coordinated migration (3). These pathways are implicated in malignant cell transformation and metastasis based on in vitro evidence showing tumorigenic and invasive responses to enhanced signaling in cell lines. Studies have demonstrated that overexpression of RhoC enhances invasion and metastasis in mouse xenografts of human melanoma and lung cancer cell lines (4, 5). In addition, some human tumors show elevated expression of Rho GTPases and exchange factors and/or reduced expression of GTPase-activating factors (68). Signaling through RhoA promotes actin polymerization and stress fiber formation, providing cells with contractile force needed for cell movement. Rho-GTP interacts with various effectors, including Rho-activated kinase, which promotes actin-myosin assembly via phosphorylation of myosin light chain phosphatase (9), or diaphanous-related formins, which nucleate actin filaments and stabilize microtubules (10, 11). Studies of cultured melanoma cells have revealed an “amoeboid” invasion mechanism involving RhoA-dependent Rho-activated kinase activation and inactivation of Rac (12, 13).RhoA also controls the formation and turnover of focal adhesion contacts, which mediate interactions between extracellular matrix and the actin cytoskeleton (14, 15). Signaling involves activation of Src and focal adhesion kinase (FAK)1 and subsequent tyrosine phosphorylation of proteins recruited to integrin receptor complexes (16). Embryonic cells from FAK−/− mice lose motility and cannot be rescued with FAK harboring a Y397F autophosphorylation site mutation not because they fail to form focal adhesions but because they are unable to disassemble focal adhesions (17). Thus, Rho controls cell movement by modulating the turnover of focal adhesion complexes via FAK. However, the mechanisms by which Rho GTPases control FAK are incompletely understood.In this study, we report that RhoA was constitutively activated in melanoma cells in a stage-specific pattern with elevated activity in cells from metastatic tumors. We present a functional proteomics screen for molecular targets of RhoA from which we identified a previously uncharacterized human protein induced in response to constitutive RhoA activation. This protein promoted Rho-dependent cell invasion and cell motility and provided a novel link for regulation of FAK tyrosine phosphorylation by RhoA. Thus, we refer to it as “mediator of Rho-dependent invasion (MRDI).” Although human MRDI has not been studied previously, it shows close sequence similarity to a methylthioribose-1-phosphate isomerase, which functions in methionine salvage pathways characterized in bacteria and yeast. We demonstrated that MRDI indeed has methylthioribose-1-phosphate isomerase activity and is required for methionine salvage in human cells. We further demonstrated that the catalytic activity of MRDI is independent of its role in cell invasion. Thus, MRDI is a dual function protein with promiscuous roles both as a metabolic enzyme and as an effector of signaling and cancer cell invasion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号