首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2124篇
  免费   148篇
  国内免费   9篇
  2024年   4篇
  2023年   18篇
  2022年   38篇
  2021年   74篇
  2020年   50篇
  2019年   58篇
  2018年   64篇
  2017年   55篇
  2016年   94篇
  2015年   121篇
  2014年   124篇
  2013年   181篇
  2012年   148篇
  2011年   167篇
  2010年   99篇
  2009年   101篇
  2008年   112篇
  2007年   116篇
  2006年   96篇
  2005年   81篇
  2004年   54篇
  2003年   54篇
  2002年   47篇
  2001年   42篇
  2000年   33篇
  1999年   35篇
  1998年   18篇
  1997年   12篇
  1996年   14篇
  1995年   10篇
  1994年   15篇
  1993年   10篇
  1992年   16篇
  1991年   6篇
  1990年   9篇
  1989年   12篇
  1988年   7篇
  1987年   5篇
  1986年   5篇
  1985年   10篇
  1983年   6篇
  1982年   4篇
  1981年   6篇
  1979年   6篇
  1978年   7篇
  1977年   6篇
  1976年   3篇
  1975年   5篇
  1974年   6篇
  1972年   3篇
排序方式: 共有2281条查询结果,搜索用时 109 毫秒
11.
12.
By means of gel electrophoresis of tissue extracts we have studied protein polymorphism inEligmodontia typus. The analysis was performed on specimens from five population samples collected at different sites in Patagonia (Argentina). Mean heterozygosity (\-h) and proportion of polymorphic loci (P) were determined on the basis of 19 loci. Considering all individuals as one sample, \-h gave a value of 0.16 and P was 70%. Although these values are much higher than those reported for most rodent species, they are very similar to those obtained by us for four species of the genusCalomys and forGraomys griseoflavus. There is a striking genetic identity (IN=0.99) among populations from regions with different environmental conditions, indicating that the species possesses a common genic pool. Genetic distance with other species of the Phyllotini was estimated. DN was lower betweenE. typus andCalomys (mean DN=0.88) than betweenE. typus andGraomys griseoflavus (DN=1.01). The high morphological similarity between these last two species, especially regarding those characters related to desert life adaptation, could be assigned, at least in part, to convergent evolution.  相似文献   
13.
Cells of Zygosaccharomyces bailii ISA 1307 grown in a medium with acetic acid, ethanol, or glycerol as the sole carbon and energy source transported acetic acid by a saturable transport system. This system accepted propionic and formic acids but not lactic, sorbic, and benzoic acids. When the carbon source was glucose or fructose, the cells displayed activity of a mediated transport system specific for acetic acid, apparently not being able to recognize other monocarboxylic acids. In both types of cells, ethanol inhibited the transport of labelled acetic acid. The inhibition was noncompetitive, and the dependence of the maximum transport rate on the ethanol concentration was found to be exponential. These results reinforced the belief that, under the referenced growth conditions, the acid entered the cells mainly through a transporter protein. The simple diffusion of the undissociated acid appeared to contribute, with a relatively low weight, to the overall acid uptake. It was concluded that in Z. bailii, ethanol plays a protective role against the possible negative effects of acetic acid by inhibiting its transport and accumulation. Thus, the intracellular concentration of the acid could be maintained at levels lower than those expected if the acid entered the cells only by simple diffusion.  相似文献   
14.
15.
Enterolobin, a 55-kDa cytolytic, inflammatory, and insecticidal protein isolated from seeds of the Brazilian treeEnterolobium contortisiliquum (Leguminosae-Mimosoideae) has been further purified and partially sequenced by using both manual and automated methods. A computational search of enterolobin partial amino acid sequence against the PIR database revealed possible sequence similarities with aerolysins, cytolytic proteins fromAeromonas species. An alignment of enterolobin partial sequence to the amino acid sequences ofA. hydrophila andA. sobria aerolysins showed several similar regions with many residue identites. The seed protein enterolobin and the bacterial aerolysins may be homologous proteins despite the distant phylogenetic relationship.  相似文献   
16.
The specific adhesion of cells to other cells or to particular tissue microenvirorvments is a basic function of cell migration and recognition, and underlines many biologic processes including embryogenesis, repair and immunity. Leukocytes express an array of surface receptors broadly known as “accessory adhesion molecules.” which mediate most cell -cell interactions, direct lymphocyte traffic between anatomical compartments, and facilitate cellular adhesion to the inflammation or alloantigenic sites (Springer 1990). In addition, adhesion molecules are involved in the process of antigen recognition, and may costimulate cell activation and transformation. These proteins are thought to affect the very early antigen independent events between host leukocytes and vascular endothelium. Because of these activities, the subject of adhesion molecules is gaining interest in the field of organ transplantation, in both conceptualization and development of novel therapeutic strategies (de Sousa et al. 1991, Kupiec-Weglinski et al. 1993a, Heemann et al. 1993).  相似文献   
17.
Rhizobium tropici CIAT899 is a broad-host-range strain that, in addition to Phaseolus, nodulates other plant legumes such as Leucaena and Macroptilium. The narrow-host-range of Rhizobium leguminosarum biovars phaseoli (strain CE3) and trifolii (strain RS1051) can be extended to Leucaena esculents and Phaseolus vulgaris plants, respectively, by the introduction of a DNA fragment 521 bp long, which carries 128 amino acids of the amino-terminal region of a nodD gene from R. tropici, as well as a putative nod-box-like sequence, divergently oriented. The 521 bp fragment, in the presence of L. esculenta or P. vulgaris root exudates, induced a R. leguminosarum bv. viciae nodA-lacZ fusion in either a CE3 or RS1051 background, respectively.  相似文献   
18.
Several genera of N2-fixing bacteria establish symbiotic associations with plants. Among these, the genus Rhizobium has the most significant contribution, in terms of yield, in many important crop plants. The establishment of the Rhizobium-legume symbiosis is a very complex process involving many genes which need to be co-ordinately regulated. In the first instance, plant signal molecules, known to be flavonoids, trigger the expression of host-specific genes in the bacterial partner through the action of the regulatory NodD protein. In response to these signals, Rhizobium bacteria synthesize lipo-oligosaccharide molecules which in turn cause cell differentiation and nodule development. Once the nodule has formed, Rhizobium cells differentiate into bacteroids and another set of genes is activated. These genes, designated nif and fix, are responsible for N2 fixation. In this system, several regulatory proteins are involved in a complex manner, the most important being NifA and a two component (FixK and FixL) regulatory system. Our knowledge about the establishment of these symbioses has advanced recently, although there are many questions yet to be solved.  相似文献   
19.
L1 retroposons are represented in mice by subfamilies of interspersed sequences of varied abundance. Previous analyses have indicated that subfamilies are generated by duplicative transposition of a small number of members of the L1 family, the progeny of which then become a major component of the murine L1 population, and are not due to any active processes generating homology within preexisting groups of elements in a particular species. In mice, more than a third of the L1 elements belong to a clade that became active approximately 5 Mya and whose elements are > or = 95% identical. We have collected sequence information from 13 L1 elements isolated from two species of voles (Rodentia: Microtinae: Microtus and Arvicola) and have found that divergence within the vole L1 population is quite different from that in mice, in that there is no abundant subfamily of homologous elements. Individual L1 elements from voles are very divergent from one another and belong to a clade that began a period of elevated duplicative transposition approximately 13 Mya. Sequence analyses of portions of these divergent L1 elements (approximately 250 bp each) gave no evidence for concerted evolution having acted on the vole L1 elements since the split of the two vole lineages approximately 3.5 Mya; that is, the observed interspecific divergence (6.7%-24.7%) is not larger than the intraspecific divergence (7.9%-27.2%), and phylogenetic analyses showed no clustering into Arvicola and Microtus clades.   相似文献   
20.
Successful protected area networks must represent biodiversity across taxonomic groups. However, too often plant species are overlooked in conservation planning, and the resulting protected areas may, as a result, fail to encompass the most important sites for plant diversity. The Mozambique Tropical Important Plant Areas project sought to promote the conservation of Mozambique's flora through the identification of Important Plant Areas (IPAs). Here, we use the Weighted Endemism including Global Endangerment (WEGE) index to identify the richest areas for rare and endemic plants in Mozambique and subsequently evaluate how well represented these hotspots are within the current protected area and IPA networks. We also examine the congruence between IPA and protected areas to identify opportunities for strengthening the conservation of plants in Mozambique. We found that high WEGE scores, representing areas rich in endemic/near-endemic and threatened species, predict the presence of IPAs in Mozambique, but do not predict the presence of protected areas. We also find that there is limited overlap between IPAs and protected areas in Mozambique. We demonstrate how IPAs could be an important tool for ensuring priority sites for plant diversity are included within protected area network expansions, particularly following the adoption of the “30 by 30” target agreed within the post-2020 Convention on Biological Diversity framework, with great potential for this method to be replicated elsewhere in the global tropics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号