首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1342940篇
  免费   148797篇
  国内免费   1449篇
  1493186篇
  2018年   12243篇
  2017年   11468篇
  2016年   16923篇
  2015年   23872篇
  2014年   27756篇
  2013年   39291篇
  2012年   44550篇
  2011年   45152篇
  2010年   30717篇
  2009年   28084篇
  2008年   39809篇
  2007年   41204篇
  2006年   38482篇
  2005年   37249篇
  2004年   36987篇
  2003年   35317篇
  2002年   34227篇
  2001年   57078篇
  2000年   57224篇
  1999年   46005篇
  1998年   17514篇
  1997年   17827篇
  1996年   16912篇
  1995年   15809篇
  1994年   15456篇
  1993年   15326篇
  1992年   38387篇
  1991年   37247篇
  1990年   36500篇
  1989年   35697篇
  1988年   33034篇
  1987年   31378篇
  1986年   29290篇
  1985年   29174篇
  1984年   24508篇
  1983年   21072篇
  1982年   16248篇
  1981年   14733篇
  1980年   13705篇
  1979年   23022篇
  1978年   18197篇
  1977年   16487篇
  1976年   15296篇
  1975年   16974篇
  1974年   18331篇
  1973年   18150篇
  1972年   16297篇
  1971年   15040篇
  1970年   12835篇
  1969年   12482篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
As part of a program towards the development of novel antibiotics, a convenient method for solid-phase synthesis of the cyclic cationic peptide polymyxin B1 and analogues thereof is described. The methodology, based on cleavage-by-cyclization using Kenner's safety-catch linker, yields crude products with purities ranging from 37-67%. Antibacterial assays revealed that analogues 23-26, in which the (S)-6-methyloctanoic acid moiety is replaced with shorter acyl chains, exhibit distinct antimicrobial activity. The results suggest that the length of the acyl chain is rather critical for antimicrobial activity. On the other hand, substitution of the hydrophobic ring-segment D-Phe-6/Leu-7 in polymyxin B1 with dipeptide mimics (i.e. analogues 27-33) resulted in almost complete loss of antimicrobial activity.  相似文献   
42.
43.
Elevated levels of intracellular calcium are a major cause of myocardial dysfunction. To find possible mediators of the deregulated calcium we searched for EF-hand calcium-binding proteins of the S100 family. By PCR technology we identified three members of the S100 protein family (S100 alpha, CACY, and CAPL) in the human heart. We cloned the corresponding cDNAs and examined their expression levels in various human tissues by Northern blot analysis. All three proteins are expressed at high levels in the human heart. Whereas CACY and CAPL mRNAs are expressed ubiquitously, S100 alpha mRNA is restricted to heart, skeletal muscle, and brain. Interestingly, the expression pattern of S100 alpha, CACY, and CAPL in human tissues differs significantly from that in rodent tissues.  相似文献   
44.
45.
46.
Cell-free processing and segregation of insulin precursors   总被引:3,自引:0,他引:3  
The biosynthesis, segregation, and processing of preproinsulin (116 amino acids) was investigated to determine the mechanism(s) by which it is translocated across the endoplasmic reticulum membrane. Islet mRNA was translated in the wheat germ cell-free system, and at various times during preproinsulin synthesis, puromycin was added, followed by addition of microsomal membranes. Neither processing of preproinsulin nor translocation of proinsulin into microsomal membranes occurred in the presence of puromycin. Synchronization of preproinsulin translation by addition of 7-methylguanosine 5'-phosphate enabled the timing of preproinsulin synthesis and proinsulin (91 amino acids) segregation into microsomal membranes to be determined. Membrane binding occurs when about 60 amino acids have been polymerized, i.e. prior to the completion of the polypeptide chain. The binding of signal recognition particle to the nascent signal is demonstrated to be an absolute requirement for translocation and processing of preproinsulin. The results indicate that segregation and processing of preproinsulin are co-translational events; no evidence for a post-translational mechanism was found. Furthermore, this work, together with similar studies, suggests that presecretory polypeptides must be synthesized as part of a precursor with a minimum size of 60-80 amino acids in order to effect membrane binding and translocation of the polypeptide chain within the intracisternal space of the endoplasmic reticulum.  相似文献   
47.
1. Examination of the cerebrospinal fluid (CSF) of head-injured patients reveals that the concentration of intraventricular xanthine is elevated and that of uridine is decreased relative to those of adult lumbar CSF. 2. No correlations were observed between CSF lactate and CSF hypoxanthine, xanthine, or uridine, suggesting that changes in purine metabolites and the pyrimidine nucleoside do not index similar cellular events as does lactic acid production. 3. Ventricular CSF from hydrocephalic infants had uridine and hypoxanthine concentrations not significantly different from those of normal adult lumbar CSF, but xanthine was significantly elevated. 4. Since uridine has anticonvulsant properties and is a crucial substrate for cerebral metabolism, it may be useful to evaluate this pyrimidine for use in the management of patients with head injury.  相似文献   
48.
Experiments on conscious rabbits were made to elaborate motor conditioned reflexes through pairing stimuli with electrocutaneous reinforcement applied every 30 s. Neuronal activity in the sensorimotor cortex and putamen was recorded during formation and reproduction of the conditioned reflexes before and after haloperidol injection (0.2 mg/kg i. v.). In the putamen, haloperidol increased the number of neurons exhibiting trace conditioned activity and made the intensity and duration of these processes rise. The changes seen in the sensorimotor cortex were opposite in nature. Inhibition of trace conditioned activity in the sensorimotor cortex depended mainly on the decreased amplitude of the reaction conditioned component. The role of the dopaminergic system in the interaction of the neostriatum and sensorimotor cortex and in formation and reproduction of trace conditioned activity of both the structures is discussed.  相似文献   
49.
It has been previously shown that unstimulated NK cells cannot preferentially lyse adenovirus serotypes 2 and 5-infected human cells. In this study, the ability of IFN to promote the selective NK cell-mediated lysis of adenovirus-infected human cells was determined. The relationship between target cell susceptibility to NK cell-mediated killing and class I Ag expression was also analyzed through the use of adenovirus serotype 2 and 5 mutants that do not make the adenovirus early region 3 19-kDa class I binding protein. IFN induced the selective lysis of adenovirus serotype 2 and 5-infected human cells by activating NK cells (IFN-alpha) and protecting uninfected, but not adenovirus-infected cells, from NK cell-mediated lysis (IFN-gamma). IFN-gamma increased the expression of class I Ag on the surface of cells infected with the adenovirus early region 3 deletion mutants, dl327 or dl801, to a level equal to or greater than that expressed on uninfected cells. Despite the increased expression of class I Ag, IFN-gamma could not protect these adenovirus-infected cells from NK cell-mediated lysis. Thus, dl327 or dl801 infection prevented IFN-gamma's induction of cytolytic resistance to NK cell-mediated killing but left IFN-gamma's induction of class I Ag intact. Surface class I Ag levels were substantially higher on IFN-gamma-treated, dl327-, and dl801-infected cells in comparison to cells infected with wild type adenovirus serotype 5. Again, higher target cell levels of class I Ag did not correlate with increased resistance to NK cell-mediated lysis because there was equivalent NK cell-mediated killing of IFN-gamma-treated adenovirus serotype 5-, dl327-, or dl801-infected cells. Thus, IFN-gamma only protects uninfected cells from NK cell-mediated killing, irrespective of target class I Ag levels, and thereby concentrates NK lytic activity on just adenovirus-infected cells. These data demonstrate that IFN-gamma's ability to protect target cells from NK cell-mediated cytolysis is unrelated to IFN-gamma's induction of surface class I MHC Ag.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号