全文获取类型
收费全文 | 125646篇 |
免费 | 7927篇 |
国内免费 | 178篇 |
专业分类
133751篇 |
出版年
2013年 | 44篇 |
2012年 | 15076篇 |
2011年 | 16404篇 |
2010年 | 2301篇 |
2009年 | 1096篇 |
2008年 | 12194篇 |
2007年 | 12484篇 |
2006年 | 11441篇 |
2005年 | 10690篇 |
2004年 | 10221篇 |
2003年 | 9523篇 |
2002年 | 8083篇 |
2001年 | 6303篇 |
2000年 | 8095篇 |
1999年 | 3092篇 |
1998年 | 390篇 |
1997年 | 242篇 |
1996年 | 182篇 |
1995年 | 174篇 |
1994年 | 171篇 |
1993年 | 140篇 |
1992年 | 152篇 |
1991年 | 132篇 |
1990年 | 113篇 |
1989年 | 112篇 |
1988年 | 94篇 |
1987年 | 107篇 |
1986年 | 64篇 |
1985年 | 66篇 |
1984年 | 61篇 |
1983年 | 80篇 |
1982年 | 62篇 |
1981年 | 37篇 |
1980年 | 40篇 |
1979年 | 36篇 |
1972年 | 42篇 |
1971年 | 51篇 |
1970年 | 46篇 |
1959年 | 229篇 |
1958年 | 405篇 |
1957年 | 414篇 |
1956年 | 381篇 |
1955年 | 353篇 |
1954年 | 336篇 |
1953年 | 314篇 |
1952年 | 304篇 |
1951年 | 290篇 |
1950年 | 262篇 |
1949年 | 63篇 |
1948年 | 62篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
The idea that resources are limited and animals can maximise fitness by trading costly activities off against one another forms the basis of life-history theory. Although investment in reproduction or growth negatively affects survival, the mechanisms underlying such trade-offs remain obscure. One plausible mechanism is oxidative damage to proteins, lipids, and nucleic acids caused by reactive oxygen species (ROS). Here, we critically evaluate the premise that ROS-induced oxidative damage shapes life history, focussing on birds and mammals, and highlight the importance of ecological studies examining free-living animals within this experimental framework. We conclude by emphasising the value of using multiple assays to determine oxidative protection and damage. We also highlight the importance of using standardised and appropriate protocols, and discuss future research directions. 相似文献
102.
Morgavi DP Forano E Martin C Newbold CJ 《Animal : an international journal of animal bioscience》2010,4(7):1024-1036
Ruminant production is under increased public scrutiny in terms of the importance of cattle and other ruminants as major producers of the greenhouse gas methane. Methanogenesis is performed by methanogenic archaea, a specialised group of microbes present in several anaerobic environments including the rumen. In the rumen, methanogens utilise predominantly H2 and CO2 as substrates to produce methane, filling an important functional niche in the ecosystem. However, in addition to methanogens, other microbes also have an influence on methane production either because they are involved in hydrogen (H2) metabolism or because they affect the numbers of methanogens or other members of the microbiota. This study explores the relationship between some of these microbes and methanogenesis and highlights some functional groups that could play a role in decreasing methane emissions. Dihydrogen ('H2' from this point on) is the key element that drives methane production in the rumen. Among H2 producers, protozoa have a prominent position, which is strengthened by their close physical association with methanogens, which favours H2 transfer from one to the other. A strong positive interaction was found between protozoal numbers and methane emissions, and because this group is possibly not essential for rumen function, protozoa might be a target for methane mitigation. An important function that is associated with production of H2 is the degradation of fibrous plant material. However, not all members of the rumen fibrolytic community produce H2. Increasing the proportion of non-H2 producing fibrolytic microorganisms might decrease methane production without affecting forage degradability. Alternative pathways that use electron acceptors other than CO2 to oxidise H2 also exist in the rumen. Bacteria with this type of metabolism normally occupy a distinct ecological niche and are not dominant members of the microbiota; however, their numbers can increase if the right potential electron acceptor is present in the diet. Nitrate is an alternative electron sinks that can promote the growth of particular bacteria able to compete with methanogens. Because of the toxicity of the intermediate product, nitrite, the use of nitrate has not been fully explored, but in adapted animals, nitrite does not accumulate and nitrate supplementation may be an alternative under some dietary conditions that deserves to be further studied. In conclusion, methanogens in the rumen co-exist with other microbes, which have contrasting activities. A better understanding of these populations and the pathways that compete with methanogenesis may provide novel targets for emissions abatement in ruminant production. 相似文献
103.
Wolschek M Samm E Seper H Sturlan S Kuznetsova I Schwager C Khassidov A Kittel C Muster T Egorov A Bergmann M 《Journal of virology》2011,85(5):2469-2473
Segment 8 of the influenza A virus codes for two proteins (NS1 and NS2/NEP) via splicing. Here, we developed a viral vector expressing a cytokine or chemokine instead of the interferon antagonist NS1. To achieve both the desired genetic stability and high transgene expression levels, NS2/NEP mRNA splicing efficacy had to be fine-tuned by modification of splicing elements. Expression levels of secreted foreign proteins could be further enhanced by fusing the N-terminal 13 amino acids of NS1 with an IgK-derived secretion signal peptide. Thus, the first start codon was used for translation initiation of both NS2/NEP and the foreign protein. 相似文献
104.
Roncarati R Latronico MV Musumeci B Aurino S Torella A Bang ML Jotti GS Puca AA Volpe M Nigro V Autore C Condorelli G 《Journal of cellular physiology》2011,226(11):2894-2900
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiac disease. Fourteen sarcomeric and sarcomere‐related genes have been implicated in HCM etiology, those encoding β‐myosin heavy chain (MYH7) and cardiac myosin binding protein C (MYBPC3) reported as the most frequently mutated: in fact, these account for around 50% of all cases related to sarcomeric gene mutations, which are collectively responsible for approximately 70% of all HCM cases. Here, we used denaturing high‐performance liquid chromatography followed by bidirectional sequencing to screen the coding regions of MYH7 and MYBPC3 in a cohort (n = 125) of Italian patients presenting with HCM. We found 6 MHY7 mutations in 9/125 patients and 18 MYBPC3 mutations in 19/125 patients. Of the three novel MYH7 mutations found, two were missense, and one was a silent mutation; of the eight novel MYBPC3 mutations, one was a substitution, three were stop codons, and four were missense mutations. Thus, our cohort of Italian HCM patients did not harbor the high frequency of mutations usually found in MYH7 and MYBPC3. This finding, coupled to the clinical diversity of our cohort, emphasizes the complexity of HCM and the need for more inclusive investigative approaches in order to fully understand the pathogenesis of this disease. J. Cell. Physiol. 226: 2894–2900, 2011. © 2011 Wiley‐Liss, Inc. 相似文献
105.
106.
Simerly C McFarland D Castro C Lin CC Redinger C Jacoby E Mich-Basso J Orwig K Mills P Ahrens E Navara C Schatten G 《Stem cell research》2011,7(1):28-40
Unequivocal evidence for pluripotency in which embryonic stem cells contribute to chimeric offspring has yet to be demonstrated in human or nonhuman primates (NHPs). Here, rhesus and baboons ESCs were investigated in interspecific mouse chimera generated by aggregation or blastocyst injection. Aggregation chimera produced mouse blastocysts with GFP-nhpESCs at the inner cell mass (ICM), and embryo transfers (ETs) generated dimly-fluorescencing abnormal fetuses. Direct injection of GFP-nhpESCs into blastocysts produced normal non-GFP-fluorescencing fetuses. Injected chimera showed >70% loss of GFP-nhpESCs after 21 h culture. Outgrowths of all chimeric blastocysts established distinct but separate mouse- and NHP-ESC colonies. Extensive endogenous autofluorescence compromised anti-GFP detection and PCR analysis did not detect nhpESCs in fetuses. NhpESCs localize to the ICM in chimera and generate pregnancies. Because primate ESCs do not engraft post-implantation, and also because endogenous autofluorescence results in misleading positive signals, interspecific chimera assays for pluripotency with primate stem cells is unreliable with the currently available ESCs. Testing primate ESCs reprogrammed into even more na?ve states in these inter-specific chimera assays will be an important future endeavor. 相似文献
107.
SWI-SNF-mediated nucleosome remodeling: role of histone octamer mobility in the persistence of the remodeled state
下载免费PDF全文

SWI-SNF is an ATP-dependent chromatin remodeling complex that disrupts DNA-histone interactions. Several studies of SWI-SNF activity on mononucleosome substrates have suggested that remodeling leads to novel, accessible nucleosomes which persist in the absence of continuous ATP hydrolysis. In contrast, we have reported that SWI-SNF-dependent remodeling of nucleosomal arrays is rapidly reversed after removal of ATP. One possibility is that these contrasting results are due to the different assays used; alternatively, the lability of the SWI-SNF-remodeled state might be different on mononucleosomes versus nucleosomal arrays. To investigate these possibilities, we use a coupled SWI-SNF remodeling-restriction enzyme assay to directly compare the remodeling of mononucleosome and nucleosomal array substrates. We find that SWI-SNF action causes a mobilization of histone octamers for both the mononucleosome and nucleosomal array substrates, and these changes in nucleosome positioning persist in the absence of continued ATP hydrolysis or SWI-SNF binding. In the case of mononucleosomes, the histone octamers accumulate at the DNA ends even in the presence of continued ATP hydrolysis. On nucleosomal arrays, SWI-SNF and ATP lead to a more dynamic state where nucleosomes appear to be constantly redistributed and restriction enzyme sites throughout the array have increased accessibility. This random positioning of nucleosomes within the array persists after removal of ATP, but inactivation of SWI-SNF is accompanied by an increased occlusion of many restriction enzyme sites. Our results also indicate that remodeling of mononucleosomes or nucleosomal arrays does not lead to an accumulation of novel nucleosomes that maintain an accessible state in the absence of continuous ATP hydrolysis. 相似文献
108.
Rondard P Liu J Huang S Malhaire F Vol C Pinault A Labesse G Pin JP 《The Journal of biological chemistry》2006,281(34):24653-24661
Many membrane receptors are made of a ligand binding domain and an effector domain mediating intracellular signaling. This is the case for the metabotropic glutamate-like G-protein-coupled receptors. How ligand binding leads to the active conformation of the effector domain in such receptors is largely unknown. Here, we used an evolutionary trace analysis and mutagenesis to identify critical residues involved in the allosteric coupling between the Venus flytrap ligand binding domain (VFT) and the heptahelical G-protein activating domain of the metabotropic glutamate-like receptors. We have shown that a conserved interdomain disulfide bridge is required for this allosteric interaction. Taking into account that these receptors are homodimers, this finding provides important new information explaining how the different conformations of the dimer of VFT lead to different signaling of such dimeric receptors. 相似文献
109.
Aisen P Enns C Wessling-Resnick M 《The international journal of biochemistry & cell biology》2001,33(10):940-959
With rare exceptions, virtually all studied organisms from Archaea to man are dependent on iron for survival. Despite the ubiquitous distribution and abundance of iron in the biosphere, iron-dependent life must contend with the paradoxical hazards of iron deficiency and iron overload, each with its serious or fatal consequences. Homeostatic mechanisms regulating the absorption, transport, storage and mobilization of cellular iron are therefore of critical importance in iron metabolism, and a rich biology and chemistry underlie all of these mechanisms. A coherent understanding of that biology and chemistry is now rapidly emerging. In this review we will emphasize discoveries of the past decade, which have brought a revolution to the understanding of the molecular events in iron metabolism. Of central importance has been the discovery of new proteins carrying out functions previously suspected but not understood or, more interestingly, unsuspected and surprising. Parallel discoveries have delineated regulatory mechanisms controlling the expression of proteins long known--the transferrin receptor and ferritin--as well as proteins new to the scene of iron metabolism and its homeostatic control. These proteins include the iron regulatory proteins (IRPs 1 and 2), a variety of ferrireductases in yeast an mammalian cells, membrane transporters (DMT1 and ferroportin 1), a multicopper ferroxidase involved in iron export from cells (hephaestin), and regulators of mitochondrial iron balance (frataxin and MFT). Experimental models, making use of organisms from yeast through the zebrafish to rodents have asserted their power in elucidating normal iron metabolism, as well as its genetic disorders and their underlying molecular defects. Iron absorption, previously poorly understood, is now a fruitful subject for research and well on its way to detailed elucidation. The long-sought hemochromatosis gene has been found, and active research is underway to determine how its aberrant functioning results in disease that is easily controlled but lethal when untreated. A surprising connection between iron metabolism and Friedreich's ataxia has been uncovered. It is no exaggeration to say that the new understanding of iron metabolism in health and disease has been explosive, and that what is past is likely to be prologue to what is ahead. 相似文献
110.
Moniot S Bruno S Vonrhein C Didierjean C Boschi-Muller S Vas M Bricogne G Branlant G Mozzarelli A Corbier C 《The Journal of biological chemistry》2008,283(31):21693-21702
The crystal structure of the thioacylenzyme intermediate of the phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Bacillus stearothermophilus has been solved at 1.8A resolution. Formation of the intermediate was obtained by diffusion of the natural substrate within the crystal of the holoenzyme in the absence of inorganic phosphate. To define the soaking conditions suitable for the isolation and accumulation of the intermediate, a microspectrophotometric characterization of the reaction of GAPDH in single crystals was carried out, following NADH formation at 340 nm. When compared with the structure of the Michaelis complex (Didierjean, C., Corbier, C., Fatih, M., Favier, F., Boschi-Muller, S., Branlant, G., and Aubry, A. (2003) J. Biol. Chem. 278, 12968-12976) the 206-210 loop is shifted and now forms part of the so-called "new P(i)" site. The locations of both the O1 atom and the C3-phosphate group of the substrate are also changed. Altogether, the results provide evidence for the flipping of the C3-phosphate group occurring concomitantly or after the redox step. 相似文献