首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   503073篇
  免费   55723篇
  国内免费   343篇
  2018年   9687篇
  2017年   9447篇
  2016年   9372篇
  2015年   8428篇
  2014年   9190篇
  2013年   12918篇
  2012年   17197篇
  2011年   21899篇
  2010年   15718篇
  2009年   14743篇
  2008年   18588篇
  2007年   20485篇
  2006年   12321篇
  2005年   13300篇
  2004年   12498篇
  2003年   12105篇
  2002年   11523篇
  2001年   21746篇
  2000年   21927篇
  1999年   17402篇
  1998年   6226篇
  1997年   6489篇
  1996年   6318篇
  1995年   5703篇
  1994年   5757篇
  1993年   5597篇
  1992年   13669篇
  1991年   12979篇
  1990年   12648篇
  1989年   12514篇
  1988年   11162篇
  1987年   10789篇
  1986年   9871篇
  1985年   9647篇
  1984年   8191篇
  1983年   7088篇
  1982年   5533篇
  1981年   5002篇
  1980年   4648篇
  1979年   7689篇
  1978年   5921篇
  1977年   5425篇
  1976年   5063篇
  1975年   5375篇
  1974年   5807篇
  1973年   5655篇
  1972年   5591篇
  1971年   5175篇
  1970年   3922篇
  1969年   3851篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
251.
Alt  C.; Kage  H.; Stutzel  H. 《Annals of botany》2000,86(5):963-973
A model of nitrogen uptake and distribution is presented whichdescribes these processes in relation to the amount of availablesoil nitrate and the rate of plant growth. Nitrogen uptake iseither sink or source limited. Sink limitation is based on maximumN-concentrations of plant compartments. The N-uptake model iscombined with a photosynthesis model based on the productivity-nitrogenrelationship at the single-leaf level. The model is parameterizedusing cauliflower as an example crop. Applied to an independentdata set, the combined model was able to predict leaf, stemand inflorescence nitrogen concentrations with correlation coefficientsbetween predicted and simulated values of 0.89, 0.66 and 0.86,respectively. The influence of nitrogen supply and light intensityon leaf nitrate-N could also be predicted with good accuracy(r2 = 0.87). Dry matter production based on the productivity-Nrelationship and the partitioning into leaf, stem and inflorescencewas also reproduced satisfactorily (r2 = 0.91, 0.93 and 0.92,respectively). Copyright 2000 Annals of Botany Company Brassica oleracea L. botrytis, cauliflower, nitrogen, nitrate, nitrogen supply, nitrogen uptake, nitrogen distribution, model  相似文献   
252.
Previously mutations in a putative protein O -mannosyltransferase (SCO3154, Pmt) and a polyprenol phosphate mannose synthase (SCO1423, Ppm1) were found to cause resistance to phage, φC31, in the antibiotic producing bacteria Streptomyces coelicolor A3(2). It was proposed that these two enzymes were part of a protein O-glycosylation pathway that was necessary for synthesis of the phage receptor. Here we provide the evidence that Pmt and Ppm1 are indeed both required for protein O-glycosylation. The phosphate binding protein PstS was found to be glycosylated with a trihexose in the S. coelicolor parent strain, J1929, but not in the pmt derivative, DT1025. Ppm1 was necessary for the transfer of mannose to endogenous polyprenol phosphate in membrane preparations of S. coelicolor . A mutation in ppm1 that conferred an E218V substitution in Ppm1 abolished mannose transfer and glycosylation of PstS. Mass spectrometry analysis of extracted lipids showed the presence of a glycosylated polyprenol phosphate (PP) containing nine repeated isoprenyl units (C45-PP). S. coelicolor membranes were also able to catalyse the transfer of mannose to peptides derived from PstS, indicating that these could be targets for Pmt in vivo .  相似文献   
253.
To investigate the potential for and constraints on the evolution of compensatory ability, we performed a greenhouse experiment using Asclepias syriaca in which foliar damage and soil nutrient concentration were manipulated. Under low nutrient conditions, significant genetic variation was detected for allocation patterns and for compensatory ability. Furthermore, resource allocation to storage was positively, genetically correlated both with compensatory ability and biomass when damaged, the last two being positively, genetically correlated with each other. Thus, in the low nutrient environment, compensatory ability via resource allocation to storage provided greater biomass when damaged. A negative genetic correlation between compensatory ability and plant biomass when undamaged suggests that this mechanism entailed an allocation cost, which would constrain the evolution of greater compensatory ability when nutrients are limited. Under high nutrient conditions, neither compensatory ability nor allocation patterns predicted biomass when damaged, even though genetic variation in compensatory ability existed. Instead, plant biomass when undamaged predicted biomass when damaged. The differences in outcomes between the two nutrient treatments highlight the importance of considering the possible range of environmental conditions that a genotype may experience. Furthermore, traits that conferred compensatory ability did not necessarily contribute to biomass when damaged, demonstrating that it is critical to examine both compensatory ability and biomass when damaged to determine whether selection by herbivores can favor the evolution of increased compensation. Received: 2 April 1999 / Accepted: 21 September 1999  相似文献   
254.
Methods for inducing high-frequency somatic embryos in cassava on cotyledons and 33 clonal accessions by the addition of supplementary copper sulphate to the induction medium were investigated. The addition of copper sulphate enhanced primary embryo induction and significantly increased secondary embryo production. All accessions from Latin America (CIAT) were embryogenically competent on medium supplemented with 8 mg l-1 2,4-dichlorophenoxyacetic acid (2,4-D) plus 1 µM copper sulphate as were 15 of the 18 accessions from Africa. The percentage of calli producing somatic embryos ranged from 7.5% in M. Bra 12 to 100% in M. Col. 1505, while the number of embryos produced per callus ranged from 0.3 in M. Bra 383 to 13.5 in TEK. The frequency of embryo production was dependent on the concentration of copper sulphate. The number of primary embryos produced per callus was also comparatively higher in the medium supplemented with copper sulphate than in the controls. The optimal concentration of copper sulphate for number of embryos produced in most accessions was 5 µM, and at this concentration the number of embryos produced was double that of the controls. Copper sulphate also reduced the maturation time of somatic embryos to 25 days from embryo initiation. High levels of 2,4-D were detrimental to embryo production. Similarly, fragmented embryos incubated in the dark produced more embryos tan those incubated under light conditions. On the basis of these results, the use of cassava somatic embryo micropropagules for germplasm conservation and synthetic seed development seems to be a strong possibility.  相似文献   
255.
256.
257.
258.
Indices of physical work capacity in athletes with different types of adaptation of the cardiorespiratory system that are engaged in various kinds of sports and have sports ranks from Master of Sports to Grade 2 have been studied. It has been shown that the highest physical work capacity is typical of athletes that have the inotropic type of adaptation, and the lowest, of athletes with the chronotropic type of adaptation. High indices of physical work capacity were recorded in athletes with the respiratory type of adaptation. Types of adaptation affect the indices of physical work capacity, and it is possible to forecast sports results on their basis.  相似文献   
259.
Nutrition plays a key role in many aspects of health and dietary imbalances are major determinants of chronic diseases including cardiovascular disease, obesity, diabetes and cancer. Adequate nutrition is particularly essential during critical periods in early life (both pre- and postnatal). In this regard, there is extensive epidemiologic and experimental data showing that early sub-optimal nutrition can have health consequences several decades later.  相似文献   
260.
Plants, when exposed to abiotic or biotic stress, produce several pathogenesis-related proteins to counteract the effects of stress. Osmotin is one of the important pathogenesis-related proteins induced during several stress conditions. We have developed improved salt stress tolerant transgenic chilli pepper plants (Capsicum annum L. var. Aiswarya 2103) by ectopic expression of the Nicotiana tabaccum osmotin gene using Agrobacterium tumefaciens EHA105 as a vector. Four-week-old chilli pepper leaves were used as an explant and A. tumefaciens EHA105 harboring pBINASCOSM plasmid that contains osmotin gene under the control of CaMV 35S promoter and npt II as a selectable marker was used in co-cultivation. Transgene integration and expression were analyzed using molecular, immunochemical, and biochemical assays. PCR and Southern blot analysis confirmed that osmotin gene has been successfully integrated into the genome of chilli pepper plants. The osmotin gene was stably segregated and expressed in T2 generation transgenic chilli pepper plants, and it was confirmed by Western blot analysis. Biochemical assays of these putative transgenic plants revealed enhanced levels of chlorophyll, proline, glycinebetaine, APX, SOD, DHAR, MDHAR, GR, and relative water content. Yield potential of the putative transgenic chilli pepper plants was evaluated under salinity stress conditions in a green house. The putative transgenic chilli pepper plants overexpressing the osmotin gene were morphologically similar to wild-type plants and produced 3.32 kg chilli pepper fruits per plant at 300 mM NaCl concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号