首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   463726篇
  免费   57293篇
  国内免费   283篇
  2018年   3985篇
  2017年   3692篇
  2016年   5711篇
  2015年   8574篇
  2014年   9656篇
  2013年   13518篇
  2012年   15573篇
  2011年   15660篇
  2010年   10356篇
  2009年   9536篇
  2008年   13607篇
  2007年   14141篇
  2006年   12776篇
  2005年   12614篇
  2004年   12334篇
  2003年   11712篇
  2002年   11265篇
  2001年   22026篇
  2000年   22125篇
  1999年   17737篇
  1998年   6422篇
  1997年   6635篇
  1996年   6452篇
  1995年   5842篇
  1994年   5904篇
  1993年   5722篇
  1992年   13899篇
  1991年   13221篇
  1990年   12892篇
  1989年   12727篇
  1988年   11402篇
  1987年   11040篇
  1986年   10072篇
  1985年   9909篇
  1984年   8406篇
  1983年   7291篇
  1982年   5690篇
  1981年   5158篇
  1980年   4797篇
  1979年   7878篇
  1978年   6082篇
  1977年   5586篇
  1976年   5207篇
  1975年   5517篇
  1974年   5968篇
  1973年   5802篇
  1972年   5260篇
  1971年   4836篇
  1970年   4035篇
  1969年   3967篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
231.
232.
233.
234.
Alt  C.; Kage  H.; Stutzel  H. 《Annals of botany》2000,86(5):963-973
A model of nitrogen uptake and distribution is presented whichdescribes these processes in relation to the amount of availablesoil nitrate and the rate of plant growth. Nitrogen uptake iseither sink or source limited. Sink limitation is based on maximumN-concentrations of plant compartments. The N-uptake model iscombined with a photosynthesis model based on the productivity-nitrogenrelationship at the single-leaf level. The model is parameterizedusing cauliflower as an example crop. Applied to an independentdata set, the combined model was able to predict leaf, stemand inflorescence nitrogen concentrations with correlation coefficientsbetween predicted and simulated values of 0.89, 0.66 and 0.86,respectively. The influence of nitrogen supply and light intensityon leaf nitrate-N could also be predicted with good accuracy(r2 = 0.87). Dry matter production based on the productivity-Nrelationship and the partitioning into leaf, stem and inflorescencewas also reproduced satisfactorily (r2 = 0.91, 0.93 and 0.92,respectively). Copyright 2000 Annals of Botany Company Brassica oleracea L. botrytis, cauliflower, nitrogen, nitrate, nitrogen supply, nitrogen uptake, nitrogen distribution, model  相似文献   
235.
Previously mutations in a putative protein O -mannosyltransferase (SCO3154, Pmt) and a polyprenol phosphate mannose synthase (SCO1423, Ppm1) were found to cause resistance to phage, φC31, in the antibiotic producing bacteria Streptomyces coelicolor A3(2). It was proposed that these two enzymes were part of a protein O-glycosylation pathway that was necessary for synthesis of the phage receptor. Here we provide the evidence that Pmt and Ppm1 are indeed both required for protein O-glycosylation. The phosphate binding protein PstS was found to be glycosylated with a trihexose in the S. coelicolor parent strain, J1929, but not in the pmt derivative, DT1025. Ppm1 was necessary for the transfer of mannose to endogenous polyprenol phosphate in membrane preparations of S. coelicolor . A mutation in ppm1 that conferred an E218V substitution in Ppm1 abolished mannose transfer and glycosylation of PstS. Mass spectrometry analysis of extracted lipids showed the presence of a glycosylated polyprenol phosphate (PP) containing nine repeated isoprenyl units (C45-PP). S. coelicolor membranes were also able to catalyse the transfer of mannose to peptides derived from PstS, indicating that these could be targets for Pmt in vivo .  相似文献   
236.
To investigate the potential for and constraints on the evolution of compensatory ability, we performed a greenhouse experiment using Asclepias syriaca in which foliar damage and soil nutrient concentration were manipulated. Under low nutrient conditions, significant genetic variation was detected for allocation patterns and for compensatory ability. Furthermore, resource allocation to storage was positively, genetically correlated both with compensatory ability and biomass when damaged, the last two being positively, genetically correlated with each other. Thus, in the low nutrient environment, compensatory ability via resource allocation to storage provided greater biomass when damaged. A negative genetic correlation between compensatory ability and plant biomass when undamaged suggests that this mechanism entailed an allocation cost, which would constrain the evolution of greater compensatory ability when nutrients are limited. Under high nutrient conditions, neither compensatory ability nor allocation patterns predicted biomass when damaged, even though genetic variation in compensatory ability existed. Instead, plant biomass when undamaged predicted biomass when damaged. The differences in outcomes between the two nutrient treatments highlight the importance of considering the possible range of environmental conditions that a genotype may experience. Furthermore, traits that conferred compensatory ability did not necessarily contribute to biomass when damaged, demonstrating that it is critical to examine both compensatory ability and biomass when damaged to determine whether selection by herbivores can favor the evolution of increased compensation. Received: 2 April 1999 / Accepted: 21 September 1999  相似文献   
237.
238.
239.
The molecular basis of the substrate specificity of Clostridium histolyticum beta-collagenase was investigated using a combinatorial method. An immobilized positional peptide library, which contains 24,000 sequences, was constructed with a 7-hydroxycoumarin-4-propanoyl (Cop) fluorescent group attached at the N terminus of each sequence. This immobilized peptide library was incubated with C. histolyticum beta-collagenase, releasing fluorogenic fragments in the solution phase. The relative substrate specificity (k(cat)/K(m)) for each member of the library was determined by measuring fluorescence intensity in the solution phase. Edman sequencing was used to assign structure to subsites of active substrate mixtures. Collectively, the substrate preference for subsites (P(3)-P(4)') of C. histolyticum beta-collagenase was determined. The last position on the C-terminal side in which the identity of the amino acids affects the activity of the enzyme is P(4)', and an aromatic side chain is preferred in this position. The optimal P(1)'-P(3)' extended substrate sequence is P(1)'-Gly/Ala, P(2)'-Pro/Xaa, and P(3)'-Lys/Arg/Pro/Thr/Ser. The Cop group in either the P(2) or P(3) position is required for a high substrate activity with C. histolyticum beta-collagenase. S(2) and S(3) sites of the protease play a dominant role in fixing the substrate specificity. The immobilized peptide library proved to be a powerful approach for assessing the substrate specificity of C. histolyticum beta-collagenase, so it may be applied to the study of other proteases of interest.  相似文献   
240.
Nutrition plays a key role in many aspects of health and dietary imbalances are major determinants of chronic diseases including cardiovascular disease, obesity, diabetes and cancer. Adequate nutrition is particularly essential during critical periods in early life (both pre- and postnatal). In this regard, there is extensive epidemiologic and experimental data showing that early sub-optimal nutrition can have health consequences several decades later.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号