首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   534705篇
  免费   61510篇
  国内免费   295篇
  2018年   5902篇
  2017年   5401篇
  2016年   8071篇
  2015年   12084篇
  2014年   13050篇
  2013年   18200篇
  2012年   21335篇
  2011年   21048篇
  2010年   13773篇
  2009年   12078篇
  2008年   18150篇
  2007年   18567篇
  2006年   16834篇
  2005年   16313篇
  2004年   15889篇
  2003年   15026篇
  2002年   14265篇
  2001年   23051篇
  2000年   23129篇
  1999年   18649篇
  1998年   6838篇
  1997年   6933篇
  1996年   6701篇
  1995年   6119篇
  1994年   6175篇
  1993年   5907篇
  1992年   14524篇
  1991年   13772篇
  1990年   13401篇
  1989年   13186篇
  1988年   11809篇
  1987年   11309篇
  1986年   10347篇
  1985年   10227篇
  1984年   8705篇
  1983年   7511篇
  1982年   5872篇
  1981年   5347篇
  1980年   4956篇
  1979年   8144篇
  1978年   6275篇
  1977年   5737篇
  1976年   5384篇
  1975年   5700篇
  1974年   6172篇
  1973年   6018篇
  1972年   5378篇
  1971年   4987篇
  1970年   4155篇
  1969年   4095篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
241.
242.
In the endocytic pathway of antigen-presenting cells, HLA-DM catalyzes the exchange between class II-associated invariant chain peptide (CLIP) and antigenic peptides onto major histocompatibility complex class II molecules. At low pH of lysosomal compartments, both HLA-DM and HLA-DR undergo conformational changes, and it was recently postulated that two partially exposed tryptophans on HLA-DM might be involved in the interaction between the two molecules. To define contact regions on HLA-DM, we have conducted site-directed mutagenesis on those two hydrophobic residues. The HLA-DM alphaW62A,betaW120A (DM(W62A/W120A)) double mutant was expressed in HLA-DR(+) HeLa cells expressing invariant chain, and the activity of this DM molecule was assessed. Flow cytometry analysis of cell surface DR-CLIP complexes revealed that DM(W62A/W120A) removes CLIP as efficiently as its wild-type counterpart. DM(W62A/W120A) was found in the endocytic pathway by immunofluorescence, and DM-DR complexes were immunoprecipitated from these cells at pH 5. Finally, mutations alphaW62A and betaW120A on HLA-DM did not affect the association with HLA-DO. The complex egresses the endoplasmic reticulum and accumulates in endocytic vesicles. Moreover, DO and DM(W62A/)W120A were co-immunoprecipitated at pH 7. We conclude that the alpha62 and beta120 tryptophan residues are not required for the activity of DM, nor are they directly implicated in the interaction with DR or DO.  相似文献   
243.
Previously mutations in a putative protein O -mannosyltransferase (SCO3154, Pmt) and a polyprenol phosphate mannose synthase (SCO1423, Ppm1) were found to cause resistance to phage, φC31, in the antibiotic producing bacteria Streptomyces coelicolor A3(2). It was proposed that these two enzymes were part of a protein O-glycosylation pathway that was necessary for synthesis of the phage receptor. Here we provide the evidence that Pmt and Ppm1 are indeed both required for protein O-glycosylation. The phosphate binding protein PstS was found to be glycosylated with a trihexose in the S. coelicolor parent strain, J1929, but not in the pmt derivative, DT1025. Ppm1 was necessary for the transfer of mannose to endogenous polyprenol phosphate in membrane preparations of S. coelicolor . A mutation in ppm1 that conferred an E218V substitution in Ppm1 abolished mannose transfer and glycosylation of PstS. Mass spectrometry analysis of extracted lipids showed the presence of a glycosylated polyprenol phosphate (PP) containing nine repeated isoprenyl units (C45-PP). S. coelicolor membranes were also able to catalyse the transfer of mannose to peptides derived from PstS, indicating that these could be targets for Pmt in vivo .  相似文献   
244.
To investigate the potential for and constraints on the evolution of compensatory ability, we performed a greenhouse experiment using Asclepias syriaca in which foliar damage and soil nutrient concentration were manipulated. Under low nutrient conditions, significant genetic variation was detected for allocation patterns and for compensatory ability. Furthermore, resource allocation to storage was positively, genetically correlated both with compensatory ability and biomass when damaged, the last two being positively, genetically correlated with each other. Thus, in the low nutrient environment, compensatory ability via resource allocation to storage provided greater biomass when damaged. A negative genetic correlation between compensatory ability and plant biomass when undamaged suggests that this mechanism entailed an allocation cost, which would constrain the evolution of greater compensatory ability when nutrients are limited. Under high nutrient conditions, neither compensatory ability nor allocation patterns predicted biomass when damaged, even though genetic variation in compensatory ability existed. Instead, plant biomass when undamaged predicted biomass when damaged. The differences in outcomes between the two nutrient treatments highlight the importance of considering the possible range of environmental conditions that a genotype may experience. Furthermore, traits that conferred compensatory ability did not necessarily contribute to biomass when damaged, demonstrating that it is critical to examine both compensatory ability and biomass when damaged to determine whether selection by herbivores can favor the evolution of increased compensation. Received: 2 April 1999 / Accepted: 21 September 1999  相似文献   
245.
246.
247.
Nutrition plays a key role in many aspects of health and dietary imbalances are major determinants of chronic diseases including cardiovascular disease, obesity, diabetes and cancer. Adequate nutrition is particularly essential during critical periods in early life (both pre- and postnatal). In this regard, there is extensive epidemiologic and experimental data showing that early sub-optimal nutrition can have health consequences several decades later.  相似文献   
248.
249.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
250.
The fungal fruiting body or mushroom is a multicellular structure essential for sexual reproduction. It is composed of dikaryotic cells that contain one haploid nucleus from each mating partner sharing the same cytoplasm without undergoing nuclear fusion. In the mushroom, the pileus bears the hymenium, a layer of cells that includes the specialized basidia in which nuclear fusion, meiosis, and sporulation occur. Coprinopsis cinerea is a well-known model fungus used to study developmental processes associated with the formation of the fruiting body. Here we describe that knocking down the expression of Atr1 and Chk1, two kinases shown to be involved in the response to DNA damage in a number of eukaryotic organisms, dramatically impairs the ability to develop fruiting bodies in C. cinerea, as well as other developmental decisions such as sclerotia formation. These developmental defects correlated with the impairment in silenced strains to sustain an appropriated dikaryotic cell cycle. Dikaryotic cells in which chk1 or atr1 genes were silenced displayed a higher level of asynchronous mitosis and as a consequence aberrant cells carrying an unbalanced dose of nuclei. Since fruiting body initiation is dependent on the balanced mating-type regulator doses present in the dikaryon, we believe that the observed developmental defects were a consequence of the impaired cell cycle in the dikaryon. Our results suggest a connection between the DNA damage response cascade, cell cycle regulation, and developmental processes in this fungus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号