首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56250篇
  免费   4702篇
  国内免费   48篇
  61000篇
  2023年   200篇
  2022年   584篇
  2021年   1003篇
  2020年   556篇
  2019年   741篇
  2018年   1133篇
  2017年   889篇
  2016年   1566篇
  2015年   2585篇
  2014年   2875篇
  2013年   3368篇
  2012年   4342篇
  2011年   4153篇
  2010年   2637篇
  2009年   2319篇
  2008年   3337篇
  2007年   3100篇
  2006年   2833篇
  2005年   2558篇
  2004年   2502篇
  2003年   2226篇
  2002年   1897篇
  2001年   1645篇
  2000年   1536篇
  1999年   1218篇
  1998年   528篇
  1997年   468篇
  1996年   401篇
  1995年   393篇
  1994年   305篇
  1993年   298篇
  1992年   639篇
  1991年   515篇
  1990年   474篇
  1989年   479篇
  1988年   405篇
  1987年   390篇
  1986年   318篇
  1985年   329篇
  1984年   270篇
  1983年   224篇
  1982年   189篇
  1981年   162篇
  1980年   160篇
  1979年   220篇
  1978年   197篇
  1977年   179篇
  1976年   170篇
  1974年   196篇
  1972年   155篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Wang  Haili  Xu  Yuanyuan  Xu  Aiqing  Wang  Xinghua  Cheng  Lijun  Lee  Sharen  Tse  Gary  Li  Guangping  Liu  Tong  Fu  Huaying 《Journal of physiology and biochemistry》2020,76(4):637-653
Journal of Physiology and Biochemistry - Atrial remodeling in diabetes is partially attributed to NF-κB/TGF-β signal transduction pathway activation. We examined whether the...  相似文献   
992.
Crystal structures of enoyl-coenzyme A (CoA) isomerase from Bosea sp. PAMC 26642 (BoECI) and enoyl-CoA hydratase from Hymenobacter sp. PAMC 26628 (HyECH) were determined at 2.35 and 2.70 Å resolution, respectively. BoECI and HyECH are members of the crotonase superfamily and are enzymes known to be involved in fatty acid degradation. Structurally, these enzymes are highly similar except for the orientation of their C-terminal helix domain. Analytical ultracentrifugation was performed to determine the oligomerization states of BoECI and HyECH revealing they exist as trimers in solution. However, their putative ligand-binding sites and active site residue compositions are dissimilar. Comparative sequence and structural analysis revealed that the active site of BoECI had one glutamate residue (Glu135), this site is occupied by an aspartate in some ECIs, and the active sites of HyECH had two highly conserved glutamate residues (Glu118 and Glu138). Moreover, HyECH possesses a salt bridge interaction between Glu98 and Arg152 near the active site. This interaction may allow the catalytic Glu118 residue to have a specific conformation for the ECH enzyme reaction. This salt bridge interaction is highly conserved in known bacterial ECH structures and ECI enzymes do not have this type of interaction. Collectively, our comparative sequential and structural studies have provided useful information to distinguish and classify two similar bacterial crotonase superfamily enzymes.  相似文献   
993.
Staphylococcus aureus is a leading cause of hospital- and community-acquired infections. Despite current advances in antimicrobial chemotherapy, the infections caused by S. aureus remain challenging due to their ability to readily develop resistance. Indeed, antibiotic resistance, exemplified by methicillin-resistant S. aureus (MRSA) is a top threat to global health security. Furthermore, the current rate of antibiotic discovery is much slower than the rate of antibiotic-resistance development. It seems evident that the conventional in vitro bacterial growth-based screening strategies can no longer effectively supply new antibiotics at the rate needed to combat bacterial antibiotic-resistance. To overcome this antibiotic resistance crisis, screening assays based on host–pathogen interactions have been developed. In particular, the free-living nematode Caenorhabditis elegans has been used for drug screening against MRSA. In this review, we will discuss the general principles of the C. elegans-based screening platform and will highlight its unique strengths by comparing it with conventional antibiotic screening platforms. We will outline major hits from high-throughput screens of more than 100,000 small molecules using the C. elegans–MRSA infection assay and will review the mode-of-action of the identified hit compounds. Lastly, we will discuss the potential of a C. elegans-based screening strategy as a paradigm shift screening platform.  相似文献   
994.
Journal of Microbiology - Enterovirus A71 (EV71), the main etiological agent of handfoot- mouth disease (HFMD), circulates in many areas of the world and has caused large epidemics since 1997,...  相似文献   
995.
Journal of Microbiology - The functional and optimal expression of genes is crucial for survival of all living organisms. Numerous experiments and efforts have been performed to reveal the...  相似文献   
996.
Reactive oxygen species (ROS) act as signaling molecules to regulate various cell functions. Numerous studies have demonstrated ROS to be essential for the differentiation of adipocytes. Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant enzymes in mammalian cells. Prx2 is present in the cytoplasm and cell membranes and demonstrates ROS scavenging activity. We focused on Prx2 involvement in regulating adipogenesis and lipid accumulation and demonstrated that Prx2 expression was upregulated during adipocyte differentiation. In addition, the silencing of Prx2 (shPrx2) inhibited adipogenesis by modulating adipogenic gene expression, and cell death was enhanced via increased ROS production in shPrx2‐3T3‐L1 cells. These results demonstrate that shPrx2 triggers adipocyte cell death and weakens adipocyte function via ROS production. Taken together, our data suggest the participation of Prx2 in adipocyte function and differentiation. Our results also imply that the downregulation of Prx2 activity could help prevent obesity. Overall, findings support the development of ROS‐based therapeutic solutions for the treatment of obesity and obesity‐related metabolic disorders.  相似文献   
997.
Abstract

Mercury is affected by the movement mechanisms in the environmental media and is normally present in dry and wet depositions and surface and water vapor, among other things. The rapid growth of mercury-related industries in the past two decades reflects the result of its increased use in water sources such as in the Shimen reservoir, northern Taiwan. Consequently, residents living nearby are exposed to mercury almost every day. In light of the effects of continued exposure to the deleterious properties of mercury, this study provides modeling results of the atmosphere, soil, and freshwater over a 30-year period (2016–2046). The associated influences in the media and mercury contamination during this period will be determined via sensitivity analysis. Finally, the results of this study facilitate the assessment of potential health hazards associated with mercury inhalation and the ingestion of MeHg-contaminated fish. The mean daily dose (mg/kg) and hazard quotient (HQ) in the children and adult were 3.52E-13 (HQ = 4.10E-09) and 1.19E-13 (HQ = 1.39E-09) for Hg inhalation and 6.38E-05 (HQ = 6.38E-01) and 4.47E-05 (HQ = 4.47E-01) for ingestion of MeHg+-contaminated fish.  相似文献   
998.
999.
Melanoma can develop in a congenital melanocytic nevus (CMN). In fact, a large CMN is associated with a high risk of developing melanoma. Although melanomas arising from CMNs are thought to have a pathogenesis distinct from conventional melanomas, no studies have been conducted on the evolution or tumor heterogeneity of CMN melanomas. We applied multi‐region whole‐exome sequencing to investigate the clonal nature of driver events and evolutionary processes in CMNs and melanomas arising from CMNs. In two patients, we observed an independent subclonal evolution in cancerized fields of CMNs and chromosome 8q amplification in both melanomas arising from CMNs. The amplification of MYC, located in chromosome 8q, was correlated with the percentage of tumor cells expressing high levels of MYC protein detected in melanoma cells by immunohistochemistry. Our analysis suggests that each CMN cell may evolve sporadically and that amplification of MYC might be a key event for melanoma development in CMNs.  相似文献   
1000.
Biomolecules, especially proteins and nucleic acids, have been widely studied to develop biochips for various applications in scientific fields ranging from bioelectronics to stem cell research. However, restrictions exist due to the inherent characteristics of biomolecules, such as instability and the constraint of granting the functionality to the biochip. Introduction of functional nanomaterials, recently being researched and developed, to biomolecules have been widely researched to develop the nanobiohybrid materials because such materials have the potential to enhance and extend the function of biomolecules on a biochip. The potential for applying nanobiohybrid materials is especially high in the field of bioelectronics. Research in bioelectronics is aimed at realizing electronic functions using the inherent properties of biomolecules. To achieve this, various biomolecules possessing unique properties have been combined with novel nanomaterials to develop bioelectronic devices such as highly sensitive electrochemical‐based bioelectronic sensing platforms, logic gates, and biocomputing systems. In this review, recently reported bioelectronic devices based on nanobiohybrid materials are discussed. The authors believe that this review will suggest innovative and creative directions to develop the next generation of multifunctional bioelectronic devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号