首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4452篇
  免费   344篇
  国内免费   525篇
  5321篇
  2024年   11篇
  2023年   57篇
  2022年   182篇
  2021年   270篇
  2020年   202篇
  2019年   235篇
  2018年   216篇
  2017年   166篇
  2016年   240篇
  2015年   314篇
  2014年   417篇
  2013年   362篇
  2012年   475篇
  2011年   431篇
  2010年   284篇
  2009年   237篇
  2008年   266篇
  2007年   217篇
  2006年   137篇
  2005年   138篇
  2004年   89篇
  2003年   82篇
  2002年   49篇
  2001年   37篇
  2000年   28篇
  1999年   19篇
  1998年   7篇
  1997年   9篇
  1996年   7篇
  1995年   8篇
  1994年   6篇
  1993年   3篇
  1992年   12篇
  1991年   9篇
  1990年   9篇
  1989年   11篇
  1988年   5篇
  1987年   8篇
  1986年   12篇
  1985年   11篇
  1984年   5篇
  1983年   8篇
  1982年   3篇
  1980年   7篇
  1978年   4篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1965年   1篇
  1956年   1篇
排序方式: 共有5321条查询结果,搜索用时 15 毫秒
111.
112.
113.
114.
115.
BAG3 is constitutively expressed in multiple types of cancer cells and its high expression is associated with tumour progression and poor prognosis of PDAC . However, little is known about the role of BAG3 in the regulation of stromal microenvironment of PDAC. The current study demonstrated that beside PDAC tumour cells, BAG3 was also expressed in some activated stroma cells in PDAC tissue, as well as in activated PSCs. In addition, the current study demonstrated that BAG3 expression in PSCs was involved in maintenance of PSCs activation and promotion of PDACs invasion via releasing multiple cytokines. The current study demonstrated that BAG3‐positive PSCs promoted invasion of PDACs via IL‐8, MCP1, TGF‐β2 and IGFBP2 in a paracrine manner. Furthermore, BAG3 sustained PSCs activation through IL‐6, TGF‐β2 and IGFBP2 in an autocrine manner. Thereby, the current study provides a new insight into the involvement of BAG3 in remodelling of stromal microenvironment favourable for malignant progression of PDAC, indicating that BAG3 might serve as a potential target for anti‐fibrosis of PDAC.  相似文献   
116.
Recently, two‐dimensional (2D) structure on three‐dimensional (3D) perovskites (graded 2D/3D) has been reported to be effective in significantly improving both efficiency and stability. However, the electrical properties of the 2D structure as a passivation layer on the 3D perovskite thin film and resistance to the penetration of moisture may vary depending on the length of the alkyl chain. In addition, the surface defects of the 2D itself on the 3D layer may also be affected by the correlation between the 2D structure and the hole conductive material. Therefore, systematic interfacial study with the alkyl chain length of long‐chained alkylammonium iodide forming a 2D structure is necessary. Herein, the 2D interfacial layers formed are compared with butylammonium iodide (BAI), octylammonium iodide (OAI), and dodecylammonium iodide (DAI) iodide on a 3D (FAPbI3)0.95(MAPbBr3)0.05 perovskite thin film in terms of the PCE and humidity stability. As the length of the alkyl chain increased from BA to OA to DA, the electron‐blocking ability and humidity resistance increase significantly, but the difference between OA and DA is not large. The PSC post‐treated with OAI has slightly higher PCE than those treated with BAI and DAI, achieving a certified stabilized efficiency of 22.9%.  相似文献   
117.
A novel type of lipid droplet/lipoprotein (LD/LP) particle from Thermoplasma acidophilum has been identified recently, and based on biochemical evidences, it was named Thermoplasma Quinone Droplet (TaQD). The major components of TaQDs are menaquinones, and to some extent polar lipids, and the 153 amino acid long Ta0547 vitellogenin‐N domain protein. In this paper, the aim is to identify TaQD proteome components with 1D‐SDS‐PAGE/LC–MS/MS and cross reference them with Edman degradation. TaQD samples isolated with three different purification methods—column chromatography, immunoprecipitation, and LD ultracentrifugation—are analyzed. Proteins Ta0093, Ta0182, Ta0337, Ta0437, Ta0438, Ta0547, and Ta1223a are identified as constituents of the TaQD proteome. The majority of these proteins is uncharacterized and has low molecular weight, and none of them is predicted to take part in lipid metabolism. Bioinformatics analyses does not predict any interaction between these proteins, however, there are indications of interactions with proteins taking part in lipid metabolism. Whether if TaQDs provide platform for lipid metabolism and the interactions between TaQD proteins and lipid metabolism proteins occur in the reality remain for further studies.  相似文献   
118.
Bioprocess and Biosystems Engineering - This study compared the performance of microalga growth, nutrient removal, algal organic matter, and energy storage products in mixotrophic,...  相似文献   
119.
Induced pluripotent stem cells (iPSCs) are reprogrammed somatic cells that gained self‐renewal and differentiation capacity similar to embryonic stem cells. Taking the precious opportunity of the TianZhou‐1 spacecraft mission, we studied the effect of space microgravity (µg) on the self‐renewal capacity of iPSCs. Murine iPSCs carrying pluripotency reporter Oct4‐GFP were used. The Oct4‐EGFP‐iPSCs clones were loaded into the bioreactor and exposed to μg in outer space for 14 days. The control experiment was performed in identical device but on the ground in earth gravity (1 g). iPSCs clones were compact and highly expressed Oct4 before launch. In μg condition, cells in iPSC clones spread out more rapidly than those in ground 1 g condition during the first 3 days after launch. However, in 1 g condition, as the cell density increases, the Oct4‐GFP signal dropped significantly during the following 3 days. Interestingly, in μg condition, iPSCs originated from the spread‐out clones during the first 3 days appeared to cluster together and reform colonies that activated strong Oct4 expression. On the other hand, iPSC clones in 1 g condition were not able to recover Oct4 expression after overgrown. Our study for the first time performed real‐time imaging on the proliferation process of iPSCs in space and found that in μg condition, cell behaviour appeared to be more dynamic than on the ground.  相似文献   
120.
Histone deacetylases (HDACs) has proved to be promising target for the development of antitumor drugs. In this study, we reported the design and synthesis of a class of novel hydroxamate-based bis-substituted aromatic amide HDAC inhibitors with 1,2,4-oxadiazole core. Most newly synthesized compounds displayed excellent HDAC1 inhibitory effects and significant anti-proliferative activities. Among them, compounds 11a and 11c increased acetylation of histone H3 and H4 in dose-dependent manner. Furthermore, 11a and 11c remarkably induced apoptosis in HepG2 cancer cells. Finally, the high potency of compound 11a was rationalized by molecular docking studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号