首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113113篇
  免费   1756篇
  国内免费   893篇
  115762篇
  2024年   27篇
  2023年   66篇
  2022年   243篇
  2021年   413篇
  2020年   247篇
  2019年   311篇
  2018年   12217篇
  2017年   10919篇
  2016年   8017篇
  2015年   1690篇
  2014年   1493篇
  2013年   1673篇
  2012年   5966篇
  2011年   14320篇
  2010年   12935篇
  2009年   9007篇
  2008年   10999篇
  2007年   12417篇
  2006年   1298篇
  2005年   1465篇
  2004年   1908篇
  2003年   1780篇
  2002年   1549篇
  2001年   880篇
  2000年   789篇
  1999年   445篇
  1998年   173篇
  1997年   150篇
  1996年   128篇
  1995年   87篇
  1994年   88篇
  1993年   98篇
  1992年   177篇
  1991年   162篇
  1990年   95篇
  1989年   110篇
  1988年   86篇
  1987年   78篇
  1986年   69篇
  1985年   53篇
  1984年   54篇
  1983年   54篇
  1982年   29篇
  1978年   28篇
  1976年   32篇
  1975年   34篇
  1973年   33篇
  1972年   265篇
  1971年   297篇
  1970年   27篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
971.
We introduce a method for computing probabilities for spontaneous activity and propagation failure of the action potential in spatially extended, conductance-based neuronal models subject to noise, based on statistical properties of the membrane potential. We compare different estimators with respect to the quality of detection, computational costs and robustness and propose the integral of the membrane potential along the axon as an appropriate estimator to detect both spontaneous activity and propagation failure. Performing a model reduction we achieve a simplified analytical expression based on the linearization at the resting potential (resp. the traveling action potential). This allows to approximate the probabilities for spontaneous activity and propagation failure in terms of (classical) hitting probabilities of one-dimensional linear stochastic differential equations. The quality of the approximation with respect to the noise amplitude is discussed and illustrated with numerical results for the spatially extended Hodgkin-Huxley equations. Python simulation code is supplied on GitHub under the link https://github.com/deristnochda/Hodgkin-Huxley-SPDE.  相似文献   
972.
Gamma-band synchronization has been linked to attention and communication between brain regions, yet the underlying dynamical mechanisms are still unclear. How does the timing and amplitude of inputs to cells that generate an endogenously noisy gamma rhythm affect the network activity and rhythm? How does such ”communication through coherence” (CTC) survive in the face of rhythm and input variability? We present a stochastic modelling approach to this question that yields a very fast computation of the effectiveness of inputs to cells involved in gamma rhythms. Our work is partly motivated by recent optogenetic experiments (Cardin et al. Nature, 459(7247), 663–667 2009) that tested the gamma phase-dependence of network responses by first stabilizing the rhythm with periodic light pulses to the interneurons (I). Our computationally efficient model E-I network of stochastic two-state neurons exhibits finite-size fluctuations. Using the Hilbert transform and Kuramoto index, we study how the stochastic phase of its gamma rhythm is entrained by external pulses. We then compute how this rhythmic inhibition controls the effectiveness of external input onto pyramidal (E) cells, and how variability shapes the window of firing opportunity. For transferring the time variations of an external input to the E cells, we find a tradeoff between the phase selectivity and depth of rate modulation. We also show that the CTC is sensitive to the jitter in the arrival times of spikes to the E cells, and to the degree of I-cell entrainment. We further find that CTC can occur even if the underlying deterministic system does not oscillate; quasicycle-type rhythms induced by the finite-size noise retain the basic CTC properties. Finally a resonance analysis confirms the relative importance of the I cell pacing for rhythm generation. Analysis of whole network behaviour, including computations of synchrony, phase and shifts in excitatory-inhibitory balance, can be further sped up by orders of magnitude using two coupled stochastic differential equations, one for each population. Our work thus yields a fast tool to numerically and analytically investigate CTC in a noisy context. It shows that CTC can be quite vulnerable to rhythm and input variability, which both decrease phase preference.  相似文献   
973.
974.
This study investigated the effects of clothing providing different Clo values upon the circadian rhythm of sympathetic nervous activity, as inferred from urinary catecholamine excretion and heart rate, in a thermoneutral environment. Seven health female subjects were studied for 37.5 h, from 21:00 h on the first day to 10:30 h on the third day, in an isolated climatic chamber controlled at 23.8?±?0.2 °C and 60?±?5% RH. Light intensity was 500 lux from 06:30 to 19:30 h, 100 lux from 19:30 to 22:30 h and 0 lux from 22:30 to 06:30 h. Subjects were tested while wearing two different types of clothing: Type L, offering 1.048 Clo of thermal insulation and with the subjects’ extremities covered; and Type H, 0.744 Clo of thermal insulation and the subjects’ extremities exposed. Urine samples were collected every 4 h, their volumes were measured and they were later assayed for their contents of adrenaline and noradrenaline; the mean heart rate for each of these 4-h periods was also calculated. The daily profiles of the variables were assessed by ANOVA, which indicated that the amplitudes and phases of the daily rhythms differed between the clothing types. This result was examined in more detail by assessing the profiles by single and group cosinor analysis (period = 24 h). All four physiological variables showed clear and statistically significant group cosinor rhythms with both types of clothing. The mean amplitudes of urine flow, the excretion rate of urinary adrenaline and heart rate were greater when wearing Type H rather than Type L clothing (p = 0.01 for urine flow and heart rate; p = 0.072 for rate of excretion of adrenaline). Also, the acrophase of the rate of urinary adrenaline excretion was earlier in all subjects wearing Type H rather than Type L clothing (p = 0.048), and the acrophases of urine flow and urinary noradrenaline excretion rate were earlier in six and five of the subjects, respectively. These results show that clothing which is worn in an environment of moderate temperature (23.8 °C) and which offers a lower Clo value (especially if the distal extremities are exposed) might induce an increase in amplitude and/or an advance of acrophase in circadian rhythms of urine flow, excretion of urinary catecholamines and heart rate. It is suggested that these rhythmic changes, which imply changes in the daily profile of sympathetic nervous system activity, might be important when daily thermoregulation and comfort in response to the type of clothing being worn in daily life are considered.  相似文献   
975.

Key message

In mature black spruce, bud burst process is anticipated by soil warming, while delayed by foliar applications of nitrogen; however, the effects depend on growth conditions at the site.

Abstract

The observation of phenological events can be used as biological indicator of environmental changes, especially from the perspective of climate change. In boreal forests, the onset of the bud burst is a key factor in the length of the growing season. With current climate change, the major factors limiting the growth of boreal trees (i.e., temperature and nitrogen availability) are changing and studies on mature trees are limited. The aim of this study was to investigate the effects of soil warming and increased nitrogen (N) deposition on bud burst of mature black spruce [Picea mariana (Mill.) BSP]. From 2008 onwards, an experimental manipulation of these environmental growth conditions was conducted in two stands (BER and SIM) at different altitudes in the boreal forest of Quebec, Canada. An increase in soil temperature (H treatment) and a canopy application of artificial rain enriched with nitrogen (N treatment) were performed. Observations of bud phenology were made during May–July 2012 and 2013. In BER, H treatment caused an anticipation (estimated as 1–3 days); while N treatment, a delay (estimated as 1–2 days but only in 2012) in bud burst. No treatments effect was significant in SIM. It has been demonstrated that soil temperature and N availability can play an important role in affecting bud burst in black spruce but the effects of these environmental factors on growth are closely linked with site conditions.
  相似文献   
976.

Key message

A novel non-destructive method is presented for studying the frost hardiness of roots. Principal component analysis from the electrical impedance spectra revealed differences between freezing temperatures, but no clear differences between the mycorrhizal treatments as regards freezing stress.

Abstract

We present a novel non-destructive method for the classification of root systems with different degrees of freezing injuries based on the measurement of electrical impedance spectra (EIS). Roots of Scots pine (Pinus sylvestris L.) seedlings, raised in perlite with nutrient solution, were colonized by Hebeloma sp. or Suillus luteus or left non-mycorrhizal, and exposed to a series of low temperatures (5, ?5, ?12 and ?18 °C) after cultivation with and without cold acclimation regimes. In EIS measurements, we ran a small-amplitude electric current to the root system at 44 frequencies between 5 Hz and 100 kHz through electrodes set in the stem and in perlite at the bottom of the container. The normalized (Euclidian) electrical impedance spectra were classified using the CLAFIC-method (CLAss-Featuring Information Compression) that is based on a subspace method with two variants where the longest projection vector defines the sample class. The current delivery through the root system was affected by freezing injuries in the roots. The most remarkable change, indicating the threshold for cold tolerance, took place between ?5 and ?12 °C for non-acclimated and between ?12 and ?18 °C for cold acclimated roots. No difference was found between the mycorrhizal treatments in the response to the freezing temperatures. The results on the effects of both the low-temperature exposure and mycorrhizas agree with freezing damage assessments done by other methods.
  相似文献   
977.

Key message

A higher mortality of dominant trees under drought stress is explained by impacts of tree size, canopy- and root structure and the hydraulic transport system.

Abstract

Drought stress can trigger tree mortality but the impact depends on stress intensity (water demand and availability) and on the vulnerability of the individual. Therefore, most research focusses on the species-specific properties such as water use efficiency or hydraulic conductivity that determine vulnerability. At the ecosystem scale, however, tree properties that have been found important for drought sensitivity or resistance vary with individual size and resource availability within a forest—also within the same species. This is caused by different environmental conditions for each tree and hence different growth histories of individuals generating specific anatomical and physiological features. Individual drought stress sensitivity might thus be considerably different from stand scale sensitivity. Indeed, empirical evidence shows that drought stress impact depends on tree social position which can be defined in degrees of suppression but correlated to resource availability, stress sensitivity and stress exposure. In this review, we collect such evidence and discuss the role of microclimate and soil water distribution as well as anatomical and physiological adjustments, which might serve as foundation for better-adapted management strategies to mitigate drought stress impacts. Finally, we define model requirements aiming to capture stand-scale drought responses or management impacts related to drought stress mitigation.
  相似文献   
978.

Keymessage

The temporal gradations of the investigated phenolics in Norway spruce bark after bark beetle (Ips typographus) attack followed the general eco-physiological concept. Treatment with salicylic acid inhibits bark beetle colonisation, alleviates the phenolic responses and activates the synthesis of condensed tannins on later sampling dates.

Abstract

Conifer bark is the target of numerous organisms due to its assimilated transport and nutrient storage functions. In the presented study, 100 mM salicylic acid (SA) was applied onto Norway spruce stems prior to being infested with bark beetles (Ips typographus L.), to study the temporal gradation of changes in condensed tannins (CT) and total phenolics (tPH) and their significance for mediating stress-tolerance. A significant accumulation of CT was monitored in untreated trees in response to progressive bark beetle infestation occurring from May onwards. In SA-treated infested trees, the CT values remained at control levels until May, but after the re-treatment of infested trees in June, the concentrations of CT rose significantly in comparison to the controls. The tPH values dropped 16 days after SA-treatment, independent of infestation, and later on remained at control level until July. In contrast, tPH contents accumulated in untreated infested trees in May, eased in June and increased again in July, when the trees were affected by the second generation of bark beetles. To sum up, in May and July when the highest beetle-flight activity was monitored the metabolic shift of phenolics within untreated infested trees differed significantly from the response of SA-treated trees. In addition, on SA-treated trees less entrance holes were monitored over the whole period of sampling when compared to untreated infested trees. These results provide evidence that SA-treatment alleviates the phenolic responses, activates the synthesis of condensed tannins and inhibits bark beetle colonisation.
  相似文献   
979.
980.
Two-tier vessels, developed for culturing of microalgae and cyanobacteria at high cell density on a shaken platform, were assembled from a flat lower chamber to be filled with a CO2 buffer and an upper flat sterile chamber for the culture that was separated from the lower chamber by a porous polypropylene membrane. Diffusive gas exchange with the atmosphere was controlled by the O2 outlet channel. Referred to surface area, rates of CO2 transfer to a shaken weakly alkaline buffer solution across the membrane were higher than those reached on the conventional pathway through the free upper liquid surface. Membrane-mediated CO2 supply enabled rapid growth of Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 up to ultrahigh cell density. The biomass (dry weight) concentration of Synechococcus cultures reached more than 30 g L?1 on a buffered medium with adequate concentrations of mineral nutrients. An increase of 15 to 20 g L?1 was observed during repeated two-day cycles. Separate pathways for CO2 supply and oxygen outlet prevented significant loss of CO2. Convective gas flow through the oxygen outlet channel enabled the estimation of the O2 generation rate. The permeability of the channel for diffusive O2/N2 exchange limited the O2 concentration to a moderate value. It is concluded that shaken flat cultures using CO2 supply through a porous hydrophobic membrane and diffusive release of O2 through a separate pathway are promising for research on microalgae and cyanobacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号