首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   13篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   5篇
  2005年   5篇
  2004年   5篇
  2003年   7篇
  2002年   2篇
  2001年   4篇
  2000年   10篇
  1999年   5篇
  1998年   4篇
  1997年   6篇
  1996年   5篇
  1995年   5篇
  1993年   3篇
  1992年   3篇
  1991年   6篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1981年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
81.
RNA recognition by a Staufen double-stranded RNA-binding domain   总被引:17,自引:6,他引:17       下载免费PDF全文
The double-stranded RNA-binding domain (dsRBD) is a common RNA-binding motif found in many proteins involved in RNA maturation and localization. To determine how this domain recognizes RNA, we have studied the third dsRBD from Drosophila Staufen. The domain binds optimally to RNA stem–loops containing 12 uninterrupted base pairs, and we have identified the amino acids required for this interaction. By mutating these residues in a staufen transgene, we show that the RNA-binding activity of dsRBD3 is required in vivo for Staufen-dependent localization of bicoid and oskar mRNAs. Using high-resolution NMR, we have determined the structure of the complex between dsRBD3 and an RNA stem–loop. The dsRBD recognizes the shape of A-form dsRNA through interactions between conserved residues within loop 2 and the minor groove, and between loop 4 and the phosphodiester backbone across the adjacent major groove. In addition, helix α1 interacts with the single-stranded loop that caps the RNA helix. Interactions between helix α1 and single-stranded RNA may be important determinants of the specificity of dsRBD proteins.  相似文献   
82.
83.
Polycomb group proteins are epigenetic regulators that maintain patterns of gene expression over multiple rounds of cell division. Many of these proteins, including polyhomeotic and the MBT repeat containing proteins SCM and dSfmbt, contain an atypical C2C2 zinc finger with a characteristic phenylalanine–cysteine–serine sequence motif. The reoccurrence of this so‐called FCS zinc finger in a variety of polycomb group proteins suggests that it has an important regulatory function. We have determined the solution structure of the FCS zinc finger of the human dSfmbt homologue L(3)mbt‐like 2 (L3MBTL2). The structure consists of a β‐hairpin followed by an α‐helix. The zinc ligands are situated in the β‐hairpin and at the N‐terminus of the α‐helix an arrangement typical of the treble clef class of zinc fingers. The structure is consistent with the proposal that FCS zinc fingers bind to regulatory RNAs.  相似文献   
84.
Recently we reported that CRLK1, a novel calcium/calmodulin-regulated receptor-like kinase plays an important role in regulating plant cold tolerance. Calcium/calmodulin binds to CRLK1 and upregulates its activity. Gene knockout and complementation studies revealed that CRLK1 is a positive regulator of plant response to chilling and freezing temperatures. Here we show that MEKK1, a member of MAP kinase kinase kinase family, interacts with CRLK1 both in vitro and in planta. The cold triggered MAP kinase activation in wild-type plants was abolished in crlk1 knockout mutants. Similarly, the cold induced expression levels of genes involved in MAP kinase signaling are also altered in crlk1 mutants. These results suggest that calcium/calmodulinregulated CRLK1 modulates cold acclimation through MAP kinase cascade in plants.Key words: calcium, calmodulin, cold stress, MAPK, Arabidopsis, protein phosphorylationCalcium, a universal second messenger in eukaryotic cells, mediates changes in external and internal signals leading to the physiological responses.14 Calcium/calmodulin (Ca2+/CaM)-dependent protein kinases (CaMKs) are very important players in calcium/calmodulin mediated signaling in mammalian cells.5 In plants, Ca2+/CaM-dependent protein phosphorylation was observed more than 25 years ago.6 Several calmodulin-regulated protein kinases have been identified and characterized.7,8 For example, plants have a unique chimeric Ca2+/CaM-dependent protein kinase (CCaMK), which exhibits Ca2+-dependent autophosphorylation and Ca2+/CaM-dependent substrate phosphorylation.9 CCaMK is required for bacterial and fungal symbioses in plants.1012 Recently, we characterized a novel plant-specific calcium/CaM-regulated receptor-like kinase, CRLK1.13 Ca2+/CaM binds to CRLK1 and stimulates its kinase activity. Functional studies with CRLK1 indicate that CRLK1 acts as a positive regulator in plant response to chilling and freezing temperatures. To further define the CRLK1-mediated signal pathway, we isolated CRLK1 interacting proteins by co-immunoprecipitation using an anti-CRLK1 antibody. Since cold increases the amount of CRLK1 protein, wildtype plants (WT) were treated at 4°C for 1 hr before co-immunoprecipitation. The resulting CRLK1 immunocomplex was separated by SDS-PAGE. We observed several bands of different sizes only in the wild-type but not in the crlk1 knockout mutant plants (Fig. 1A). Furthermore, the intensity of these bands increased upon cold treatment, suggesting that they are the putative partners or associated proteins of the CRLK1 immunocomplex.Open in a separate windowFigure 1CRLK1 Interacts with MEKK1. (A) One-dimension SDS-PAGE of anti-CRLK1 immunocomplexes from 3-week-old WT or crlk1 plants with or without cold treatment. One mg of total protein was used for immunoprecipitation. (B) A list of putative CRLK1-interacting proteins determined by MALDI-TOF-MS analysis. (C) CRLK1 interacts with MEKK1 as shown by GST pull-down assay. (D) BiFC analysis show that CR LK associates with MEKK1 in vivo. Upper row shows that CRLK and MEKK1 associate both on cell membrane and in endosomes. The middle and last rows are controls. Bar = 10 µm.To determine the identities of these proteins, mass spectrometric analysis was performed with the total immunocomplex.14 In addition to CRLK1, there were 12 other proteins which matched the Arabidopsis database. Several of them appeared in the pull-down complex from WT, but not from crlk1 mutants. These putative interacting proteins included MEKK1, another unknown protein kinase, a type 2C phosphatase and CaM (Fig. 1B). MEKK1 is one of the 60 putative MAPKKKs in the Arabidopsis genome, and sits on the top of mitogen-activated protein kinase (MAPK) cascade. The MAPK signaling consists of a cascade of three consecutively acting protein kinases, a MAP kinase kinase kinase (MAPKKK), a MAP kinase kinase (MAPKK) and a MAP kinase (MAPK). Plants possess multiple MAPKKKs, MAPKKs and MAPKs, which respond to different upstream signals and activate distinct downstream pathways.1517 The specific MAPK module responding to lower temperature has been determined in Arabidopsis.18,19 MEKK1, a member of MAPKKKs, specifically interacts and phosphorylates MKK2 and regulates COR genes expression in response to cold stress.19 MEKK1 has been shown to play a role in mediating reactive oxygen species homeostasis.20,21 Therefore we selected MEKK1 from the putative CRLK1 partners for further studies.  相似文献   
85.
86.
Distinct gender-associated mitochondrial DNA (mtDNA) lineages (i.e., lineages which are transmitted either through males or through females) have been demonstrated in two families of bivalves, the Mytilidae (marine mussels) and the Unionidae (freshwater mussels), which have been separated for more than 400 Myr. The mode of transmission of these M (for male-transmitted) and F (for female-transmitted) molecules has been referred to as doubly uniparental inheritance (DUI), in contrast to standard maternal inheritance (SMI), which is the norm in animals. A previous study suggested that at least three origins of DUI are required to explain the phylogenetic pattern of M and F lineages in freshwater and marine mussels. Here we present phylogenetic evidence based on partial sequences of the cytochrome c oxidase subunit I gene and the 16S RNA gene that indicates the DUI is a dynamic phenomenon. Specifically, we demonstrate that F lineages in three species of Mytilus mussels, M. edulis, M. trossulus, and M. californianus, have spawned separate lineages which are now associated only with males. This process is referred to as "masculinization" of F mtDNA. By extension, we propose that DUI may be a primitive bivalve character and that periodic masculinization events combined with extinction of previously existing M types effectively reset the time of divergence between conspecific gender-associated mtDNA lineages.   相似文献   
87.
A mutant of the peptide antibiotic nisin in which the dehydroalanine residue at position 5 has been replaced by an alanine has been produced and structurally characterized. It is shown to have activity very similar to that of wild-type nisin in inhibiting growth of Lactococcus lactis and Micrococcus luteus but is very much less active than nisin as an inhibitor of the outgrowth of spores of Bacillus subtilis. These observations, which parallel those of W. Liu and J. N. Hansen (Appl. Environ. Microbiol. 59:648-651, 1993) on the corresponding mutant of the related antibiotic subtilin, are discussed in terms of the mechanism(s) of action of these antibiotics.  相似文献   
88.
89.
Autophagy plays a key role during Salmonella infection, by eliminating these pathogens following escape into the cytosol. In this process, selective autophagy receptors, including the myosin VI adaptor proteins optineurin and NDP52, have been shown to recognize cytosolic pathogens. Here, we demonstrate that myosin VI and TAX1BP1 are recruited to ubiquitylated Salmonella and play a key role in xenophagy. The absence of TAX1BP1 causes an accumulation of ubiquitin-positive Salmonella, whereas loss of myosin VI leads to an increase in ubiquitylated and LC3-positive bacteria. Our structural studies demonstrate that the ubiquitin-binding site of TAX1BP1 overlaps with the myosin VI binding site and point mutations in the TAX1BP1 zinc finger domains that affect ubiquitin binding also ablate binding to myosin VI. This mutually exclusive binding and the association of TAX1BP1 with LC3 on the outer limiting membrane of autophagosomes may suggest a molecular mechanism for recruitment of this motor to autophagosomes. The predominant role of TAX1BP1, a paralogue of NDP52, in xenophagy is supported by our evolutionary analysis, which demonstrates that functionally intact NDP52 is missing in Xenopus and mice, whereas TAX1BP1 is expressed in all vertebrates analysed. In summary, this work highlights the importance of TAX1BP1 as a novel autophagy receptor in myosin VI-mediated xenophagy. Our study identifies essential new machinery for the autophagy-dependent clearance of Salmonella typhimurium and suggests modulation of myosin VI motor activity as a potential therapeutic target in cellular immunity.  相似文献   
90.
Coulombic interactions between charges on the surface of proteins contribute to stability. It is difficult, however, to estimate their importance by protein engineering methods because mutation of one residue in an ion pair alters the energetics of many interactions in addition to the coulombic energy between the two components. We have estimated the interaction energy between two charged residues, Asp-12 and Arg-16, in an alpha-helix on the surface of a barnase mutant by invoking a double-mutant cycle involving wild-type enzyme (Asp-12, Thr-16), the single mutants Thr----Arg-16 and Asp----Ala-12, and the double mutant Asp----Ala-12, Thr----Arg-16. The changes in free energy of unfolding of the single mutants are not additive because of the coulombic interaction energy. Additivity is restored at high concentrations of salt that shield electrostatic interactions. The geometry of the ion pair in the mutant was assumed to be the same as that in the highly homologous ribonuclease from Bacillus intermedius, binase, which has Asp-12 and Arg-16 in the native enzyme. The ion pair does not form a hydrogen-bonded salt bridge, but the charges are separated by 5-6 A. The mutant barnase containing the ion pair Asp-12/Arg-16 is more stable than wild type by 0.5 kcal/mol, but only a part of the increased stability is attributable to the electrostatic interaction. We present a formal analysis of how double-mutant cycles can be used to measure the energetics of pairwise interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号