首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   4篇
  139篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2012年   7篇
  2011年   8篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   9篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   7篇
  2000年   3篇
  1999年   3篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   5篇
  1989年   8篇
  1988年   4篇
  1987年   10篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
  1974年   2篇
  1967年   1篇
排序方式: 共有139条查询结果,搜索用时 15 毫秒
131.
Androgen receptor (AR) is a major therapeutic target that plays pivotal roles in prostate cancer (PCa) and androgen insensitivity syndromes. We previously proposed that compounds recruited to ligand-binding domain (LBD) surfaces could regulate AR activity in hormone-refractory PCa and discovered several surface modulators of AR function. Surprisingly, the most effective compounds bound preferentially to a surface of unknown function [binding function 3 (BF-3)] instead of the coactivator-binding site [activation function 2 (AF-2)]. Different BF-3 mutations have been identified in PCa or androgen insensitivity syndrome patients, and they can strongly affect AR activity. Further, comparison of AR x-ray structures with and without bound ligands at BF-3 and AF-2 showed structural coupling between both pockets. Here, we combine experimental evidence and molecular dynamic simulations to investigate whether BF-3 mutations affect AR LBD function and dynamics possibly via allosteric conversation between surface sites. Our data indicate that AF-2 conformation is indeed closely coupled to BF-3 and provide mechanistic proof of their structural interconnection. BF-3 mutations may function as allosteric elicitors, probably shifting the AR LBD conformational ensemble toward conformations that alter AF-2 propensity to reorganize into subpockets that accommodate N-terminal domain and coactivator peptides. The induced conformation may result in either increased or decreased AR activity. Activating BF-3 mutations also favor the formation of another pocket (BF-4) in the vicinity of AF-2 and BF-3, which we also previously identified as a hot spot for a small compound. We discuss the possibility that BF-3 may be a protein-docking site that binds to the N-terminal domain and corepressors. AR surface sites are attractive pharmacological targets to develop allosteric modulators that might be alternative lead compounds for drug design.  相似文献   
132.
To test for evidence of a muscle pump effect during steady-state upright submaximal knee extension exercise, seven male subjects performed seven discontinuous, incremental exercise stages (3 min/stage) at 40 contractions/min, at work rates ranging to 60-75% peak aerobic work rate. Cardiac cycle-averaged muscle blood flow (MBF) responses and contraction-averaged blood flow responses were calculated from continuous Doppler sonography of the femoral artery. Net contribution of the muscle pump was estimated by the difference between mean exercise blood flow (MBFM) and early recovery blood flow (MBFR). MBFM rose in proportion with increases in power output with no significant difference between the two methods of calculating MBF. For stages 1 and 5, MBFM was greater than MBFR; for all others, MBFM was similar to MBFR. For the lighter work rates (stages 1-4), there was no significant difference between exercise and early recovery mean arterial pressure (MAP). During stages 5-7, MAP was significantly higher during exercise and fell significantly early in recovery. From these results we conclude that 1) at the lightest work rate, the muscle pump had a net positive effect on MBFM, 2) during steady-state moderate exercise (stages 2-4) the net effect of rhythmic muscle contraction was neutral (i.e., the impedance due to muscle contraction was exactly offset by the potential enhancement during relaxation), and 3) at the three higher work rates tested (stages 5-7), any enhancement to flow during relaxation was insufficient to fully compensate for the contraction-induced impedance to muscle perfusion. This necessitated a higher MAP to achieve the MBFM.  相似文献   
133.

Background

HIV-1 infection increases plasma levels of inflammatory markers. Combination antiretroviral therapy (cART) does not restore inflammatory markers to normal levels. Since intensification of cART with raltegravir reduced CD8 T-cell activation in the Discor-Ral and IntegRal studies, we have evaluated the effect of raltegravir intensification on several soluble inflammation markers in these studies.

Methods

Longitudinal plasma samples (0–48 weeks) from the IntegRal (n = 67, 22 control and 45 intensified individuals) and the Discor-Ral studies (44 individuals with CD4 T-cell counts<350 cells/µl, 14 control and 30 intensified) were assayed for 25 markers. Mann-Whitney, Wilcoxon, Spearman test and linear mixed models were used for analysis.

Results

At baseline, different inflammatory markers were strongly associated with HCV co-infection, lower CD4 counts and with cART regimens (being higher in PI-treated individuals), but poorly correlated with detection of markers of residual viral replication. Although raltegravir intensification reduced inflammation in individuals with lower CD4 T-cell counts, no effect of intensification was observed on plasma markers of inflammation in a global analysis. An association was found, however, between reductions in immune activation and plasma levels of the coagulation marker D-dimer, which exclusively decreased in intensified patients on protease inhibitor (PI)-based cART regimens (P = 0.040).

Conclusions

The inflammatory profile in treated HIV-infected individuals showed a complex association with HCV co-infection, the levels of CD4 T cells and the cART regimen. Raltegravir intensification specifically reduced D-dimer levels in PI-treated patients, highlighting the link between cART composition and residual viral replication; however, raltegravir had little effect on other inflammatory markers.  相似文献   
134.
135.
Pituitary adenylate cyclase-activating polypeptide (PACAP) peptides, which are co-localized with acetylcholine in preganglionic parasympathetic fibers innervating guinea pig intracardiac ganglia, depolarize and increase excitability of intracardiac neurons. Perforated patch whole cell recordings were used to test whether PACAP27-enhanced activation of Ih contributed to the increase in excitability. In current clamp, 100 nM PACAP27 increased rectification during 500-ms hyperpolarizations and increased the number of anodal break action potentials (APs). PACAP27 also increased the number of APs produced by 500-ms depolarizing currents. In voltage clamp, the effects of 100 nM PACAP27 were determined during hyperpolarizing steps from -50 mV to voltages between -60 and -120 mV. PACAP27 increased the amplitude and rate of activation of Ih. PACAP27 shifted the voltage dependence of activation of Ih by 6.6 mV. The effect of PACAP27 was eliminated by pretreatment with the Ih inhibitor ZD7288 (100 microM). The adenylyl cyclase activator forskolin (10 microM) produced a similar shift in the voltage dependence of Ih activation. We conclude that PACAP27 enhances Ih by shifting the voltage dependence of activation and propose that this effect is mediated primarily by PAC1 receptor activation of adenylyl cyclase and generation of cAMP. Furthermore, we propose that the peptide-enhanced Ih contributes to the PACAP27-induced increase in membrane excitability.  相似文献   
136.
In recent years the study of extracellular vesicles has gathered much scientific and clinical interest. As the field is expanding, it is becoming clear that better methods for characterization and quantification of extracellular vesicles as well as better standards to compare studies are warranted. The goal of the present work was to find improved parameters to characterize extracellular vesicle preparations. Here we introduce a simple 96 well plate-based total lipid assay for determination of lipid content and protein to lipid ratios of extracellular vesicle preparations from various myeloid and lymphoid cell lines as well as blood plasma. These preparations included apoptotic bodies, microvesicles/microparticles, and exosomes isolated by size-based fractionation. We also investigated lipid bilayer order of extracellular vesicle subpopulations using Di-4-ANEPPDHQ lipid probe, and lipid composition using affinity reagents to clustered cholesterol (monoclonal anti-cholesterol antibody) and ganglioside GM1 (cholera toxin subunit B). We have consistently found different protein to lipid ratios characteristic for the investigated extracellular vesicle subpopulations which were substantially altered in the case of vesicular damage or protein contamination. Spectral ratiometric imaging and flow cytometric analysis also revealed marked differences between the various vesicle populations in their lipid order and their clustered membrane cholesterol and GM1 content. Our study introduces for the first time a simple and readily available lipid assay to complement the widely used protein assays in order to better characterize extracellular vesicle preparations. Besides differentiating extracellular vesicle subpopulations, the novel parameters introduced in this work (protein to lipid ratio, lipid bilayer order, and lipid composition), may prove useful for quality control of extracellular vesicle related basic and clinical studies.  相似文献   
137.
The aim of this study was to examine the effects of assuming constant reduced scattering coefficient (mu'(s)) on the muscle oxygenation response to incremental exercise and its recovery kinetics. Fifteen subjects (age: 24 +/- 5 yr) underwent incremental cycling exercise. Frequency domain near-infrared spectroscopy (NIRS) was used to estimate deoxyhemoglobin concentration {[deoxy(Hb+Mb)]} (where Mb is myoglobin), oxyhemoglobin concentration {[oxy(Hb+Mb)]}, total Hb concentration (Total[Hb+Mb]), and tissue O(2) saturation (Sti(O(2))), incorporating both continuous measurements of mu'(s) and assuming constant mu'(s). When measuring mu'(s), we observed significant changes in NIRS variables at peak work rate Delta[deoxy(Hb+Mb)] (15.0 +/- 7.8 microM), Delta[oxy(Hb+Mb)] (-4.8 +/- 5.8 microM), DeltaTotal[Hb+Mb] (10.9 +/- 8.4 microM), and DeltaSti(O(2))(-11.8 +/- 4.1%). Assuming constant mu'(s) resulted in greater (P < 0.01 vs. measured mu'(s)) changes in the NIRS variables at peak work rate, where Delta[deoxy(Hb+Mb)] = 24.5 +/- 15.6 microM, Delta[oxy(Hb+Mb)] = -9.7 +/- 8.2 microM, DeltaTotal[Hb+Mb] = 14.8 +/- 8.7 microM, and DeltaSti(O(2))= -18.7 +/- 8.4%. Regarding the recovery kinetics, the large 95% confidence intervals (CI) for the difference between those determine measuring mu'(s) and assuming constant mu'(s) suggested poor agreement between methods. For the mean response time (MRT), which describes the overall kinetics, the 95% confidence intervals were MRT - [deoxy(Hb+Mb)] = 26.7 s; MRT - [oxy(Hb+Mb)] = 11.8 s, and MRT - Sti(O(2))= 11.8 s. In conclusion, mu'(s) changed from light to peak exercise. Furthermore, assuming a constant mu'(s) led to an overestimation of the changes in NIRS variables during exercise and distortion of the recovery kinetics.  相似文献   
138.
Mice lacking histidine decarboxylase exhibit abnormal mast cells   总被引:10,自引:0,他引:10  
Histidine decarboxylase (HDC) synthesizes histamine from histidine in mammals. To evaluate the role of histamine, we generated HDC-deficient mice using a gene targeting method. The mice showed a histamine deficiency and lacked histamine-synthesizing activity from histidine. These HDC-deficient mice are viable and fertile but exhibit a decrease in the numbers of mast cells while the remaining mast cells show an altered morphology and reduced granular content. The amounts of mast cell granular proteases were tremendously reduced. The HDC-deficient mice provide a unique and promising model for studying the role of histamine in a broad range of normal and disease processes.  相似文献   
139.
We hypothesized that the O2 uptake (Vo2) response to high-intensity exercise would be different in children than in adults. To test this hypothesis, 22 children (6-12 yr old) and 7 adults (27-40 yr old) performed 6 min of constant-work-rate cycle-ergometer exercise. Sixteen children performed a single test above their anaerobic threshold (AT). In a separate protocol, six children and all adults exercised at low and high intensity. Low-intensity exercise corresponded to the work rate at 80% of each subject's AT. High-intensity exercise (above the AT) was determined first by calculating the difference in work rate between the AT and the maximal Vo2 (delta). Twenty-five, 50, and 75% of this difference were added to the work rate at the subject's AT, and these work rates were referred to as 25% delta, 50% delta, and 75% delta. For exercise at 50% delta and 75% delta, Vo2 increased throughout exercise (O2 drift, linear regression slope of Vo2 as a function of time from 3 to 6 min) in all the adults, and the magnitude of the drift was correlated with increasing work rates in the above-AT range (r = 0.91, P less than 0.0001). In contrast, no O2 drift was observed in over half of the children during above-AT exercise. The O2 drifts were much higher in adults (1.76 +/- 0.63 ml O2.kg-1.min-2 at 75% delta) than in children (0.20 +/- 0.42, P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号