首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   19篇
  国内免费   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2015年   2篇
  2014年   2篇
  2013年   7篇
  2012年   8篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   6篇
  2006年   8篇
  2005年   9篇
  2004年   11篇
  2003年   6篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1983年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
121.
Peptide aptamers: new tools to study protein interactions   总被引:1,自引:0,他引:1  
The ability to specifically interfere with the function of proteins of pathological significance has been a goal for molecular medicine for many years. Peptide aptamers comprise a new class of molecules, with a peptide moiety of randomized sequence, which are selected for their ability to bind to a given target protein under intracellular conditions. They have the potential to inhibit the biochemical activities of a target protein, can delineate the interactions of the target protein in regulatory networks, and identify novel therapeutic targets. Peptide aptamers represent a new basis for drug design and protein therapy, with implications for basic and applied research, for a broad variety of different types of diseases.  相似文献   
122.
The problem of modelling stresses incurred at the finger joints is critical to the design of durable joint replacements in the hand. The goal of this study was to characterise the forces and stresses at the finger and thumb joints occurring during activities such as typing at a keyboard, playing piano, gripping a pen, carrying a weight and opening a jar. The metacarpal and proximal phalanx were modelled using a COMSOL-based finite element analysis. Analysis of these activities indicates that joint forces in excess of 100 N may be common at the metacarpophalangeal joint (MCP) due to carrying objects such as groceries or while opening jars. The model predicted that stresses in excess of 2 MPa, similar to stresses at the hip, occur at the MCP with the properties of cancellous bone playing a significant role in the magnitude and distribution of stress.  相似文献   
123.
A naturally occurring fatty acid, conjugated linoleic acid (CLA), reduces immune-induced TNF and inducible cyclooxygenase (COX-2) expression; key mediators of inflammation in rheumatoid arthritis (RA). On the basis of previous work, it was hypothesized that dietary CLA would act as an anti-inflammatory agent in select animal models of RA. In the collagen antibody-induced arthritis (CAIA) model, mice fed CLA (mixed isomers of c9, t11, and t10, c12-CLA) for 3 wk before anticollagen antibody injection had reduced lipopolysaccharide-induced plasma TNF levels and had arthritic scores that were 60% of mice fed corn oil (CO). In the collagen-induced arthritis (CIA) model, mice fed mixed isomers of CLA for 21 days before immunization had lower IgG(1) titers, earlier signs of joint inflammation, but similar arthritis scores compared with CO fed mice during the remaining 70-day post-injection period. Beginning on day 80 to 133, CLA-fed mice had arthritic scores 70% that of the CO-fed mice. In a second CIA experiment, CLA was fed only after the booster injection. Plasma IgG(1) levels were not reduced and arthritis onset was delayed 4 days in CLA-fed mice compared with the CO-fed mice. Peak arthritis score was similar between CLA and CO-fed mice from day 35 to 56. Because CLA reduced inflammation in the CAIA model, delayed onset of arthritis in the CIA model (CIA experiment 2) and reduced arthritis score after day 80 in the CIA model (CIA experiment 1), we concluded that dietary CLA exhibited anti-inflammatory activity that was dependent on antibody.  相似文献   
124.
Mammalian de novo DNA methyltransferases (DNMT) are responsible for the establishment of cell-type-specific DNA methylation in healthy and diseased tissues. Through genome-wide analysis of de novo methylation activity in murine stem cells we uncover that DNMT3A prefers to methylate CpGs followed by cytosines or thymines, while DNMT3B predominantly methylates CpGs followed by guanines or adenines. These signatures are further observed at non-CpG sites, resembling methylation context observed in specialised cell types, including neurons and oocytes. We further show that these preferences result from structural differences in the catalytic domains of the two de novo DNMTs and are not a consequence of differential recruitment to the genome. Molecular dynamics simulations suggest that, in case of human DNMT3A, the preference is due to favourable polar interactions between the flexible Arg836 side chain and the guanine that base-pairs with the cytosine following the CpG. By exchanging arginine to a lysine, the corresponding side chain in DNMT3B, the sequence preference is reversed, confirming the requirement for arginine at this position. This context-dependent enzymatic activity provides additional insights into the complex regulation of DNA methylation patterns.  相似文献   
125.

Background  

In the area of protein structure prediction, recently a lot of effort has gone into the development of Model Quality Assessment Programs (MQAPs). MQAPs distinguish high quality protein structure models from inferior models. Here, we propose a new method to use an MQAP to improve the quality of models. With a given target sequence and template structure, we construct a number of different alignments and corresponding models for the sequence. The quality of these models is scored with an MQAP and used to choose the most promising model. An SVM-based selection scheme is suggested for combining MQAP partial potentials, in order to optimize for improved model selection.  相似文献   
126.
Writing is a highly skilled and overlearned movement. In patients suffering from writer's cramp, a focal task-induced dystonia, writing is impaired or even impossible due to involuntary muscle contractions and abnormal posture, which occur as soon as the person picks up a pen or within writing a few words. The underlying pathophysiological mechanisms of this movement disorder are not fully understood up to now. The aim of the present study was to unravel the oscillatory network underlying physiological writing in healthy subjects and dystonic writing in writer's cramp patients. Using whole-head magnetoencephalography (MEG) and the analysis tool dynamic imaging of coherent sources (DICS) we studied oscillatory neural coupling during writing in eleven healthy subjects and eight patients suffering from writer's cramp. Simultaneous recording of brain activity with MEG and activity of forearm and hand muscles with surface electromyography (EMG) was performed while subjects were writing for five minutes with their dominant right hand. Applying DICS sources of strongest cerebro-muscular coherence and cerebro-cerebral coherence during writing were identified, which consistently included six brain areas in both, the control subjects and the patients: contralateral and ipsilateral sensorimotor cortex, ipsilateral cerebellum, contralateral thalamus, contralateral premotor and posterior parietal cortex. Coherence between cortical sources and muscles appeared primarily in the frequency of writing movements (3-7 Hz) while coherence between cerebral sources occurred primarily around 10 Hz (8-13 Hz). Interestingly, consistent coupling between both sensorimotor cortices was observed in patients only, whereas coupling between ipsilateral cerebellum and the contralateral posterior parietal cortex was found in control subjects only. These results are consistent with the often described bilateral pathophysiology and impaired sensorimotor integration in writer's cramp patients.  相似文献   
127.

Background  

The impressive increase of novel RNA structures, during the past few years, demands automated methods for structure comparison. While many algorithms handle only small motifs, few techniques, developed in recent years, (ARTS, DIAL, SARA, SARSA, and LaJolla) are available for the structural comparison of large and intact RNA molecules.  相似文献   
128.
The application of Rashevsky’s transformationT to a primordial graph yields a set of graphs corresponding to different stages in the development of the organism. However, sinceT is multiple-valued the graphs obtained are not ordered. To obtain an ordering, it is first shown that the set of graphs under consideration is equivalent to a well defined setO (for “organism”) ofn-tuples. A metric is then introduced which is based on a biological consideration discussed by Rashevsky (Bull. Math. Biophysics,16, 317–348, 1954). Since a metric implies an ordering of the setO, with a knowledge of the structure of the primordial, one can obtain the developmental sequence. Unfortunately, at present, the structure of the primordial graph is unknown which makes the direct application of the above principle impossible. Consequently, an indirect approach which makes use of more accessible biological phenomena is discussed as well. The hypothesis thatrate of development decreases exponentially and the implications this has with regard to the metric onO are discussed. It is shown that if the hypothesis is accepted the search for the developmental sequence is narrowed.  相似文献   
129.
Chromosomes have an intrinsic tendency to segregate into compartments, forming long‐distance contacts between loci of similar chromatin states. How genome compartmentalization is regulated remains elusive. Here, comparison of mouse ground‐state embryonic stem cells (ESCs) characterized by open and active chromatin, and advanced serum ESCs with a more closed and repressed genome, reveals distinct regulation of their genome organization due to differential dependency on BAZ2A/TIP5, a component of the chromatin remodeling complex NoRC. On ESC chromatin, BAZ2A interacts with SNF2H, DNA topoisomerase 2A (TOP2A) and cohesin. BAZ2A associates with chromatin sub‐domains within the active A compartment, which intersect through long‐range contacts. We found that ground‐state chromatin selectively requires BAZ2A to limit the invasion of active domains into repressive compartments. BAZ2A depletion increases chromatin accessibility at B compartments. Furthermore, BAZ2A regulates H3K27me3 genome occupancy in a TOP2A‐dependent manner. Finally, ground‐state ESCs require BAZ2A for growth, differentiation, and correct expression of developmental genes. Our results uncover the propensity of open chromatin domains to invade repressive domains, which is counteracted by chromatin remodeling to establish genome partitioning and preserve cell identity.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号