首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   23篇
  135篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   11篇
  2014年   4篇
  2013年   19篇
  2012年   6篇
  2011年   10篇
  2010年   7篇
  2009年   4篇
  2008年   7篇
  2007年   7篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2001年   1篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1990年   2篇
  1987年   1篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
  1964年   1篇
  1962年   2篇
  1961年   1篇
  1960年   2篇
  1959年   1篇
  1957年   1篇
  1954年   3篇
  1952年   1篇
排序方式: 共有135条查询结果,搜索用时 36 毫秒
101.
The long (4.6-kb) A+T region of Drosophila melanogaster mitochondrial DNA has been cloned and sequenced. The A+T region is organized in two large arrays of tandemly repeated DNA sequence elements, with nonrepetitive intervening and flanking sequences comprising only 22% of its length. The first repeat array consists of five repeats of 338-373 bp. The second consists of four intact 464-bp repeats and a fifth partial repeat of 137 bp. Three DNA sequence elements are found to be highly conserved in D. melanogaster and in several Drosophila species with short A+T regions. These include a 300-bp DNA sequence element that overlaps the DNA replication origin and two thymidylate stretches identified on opposite DNA strands. We conclude that the length heterogeneity observed in the A+T regulatory region in mitochondrial DNAs from the genus Drosophila results from the expansion (and contraction) of the number of repeated DNA sequence elements. We also propose that the 300-bp conserved DNA sequence element, in conjunction with another primary sequence determinant, perhaps the adjacent thymidylate stretch, functions in the regulation of mitochondrial DNA replication.   相似文献   
102.

Background

Much progress has been made in understanding the 3D structure of proteins using methods such as NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal which sites and residues within the structure are of special importance. Recently, there are indications that multiple-residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred from the analysis of the multiple sequence alignment data of a protein family. These intra-dependent clusters of associated sites are used to indicate hierarchical inter-residue relationships within the 3D structure. To reveal the patterns of associations among individual amino acids or sub-domain components within the structure, we apply a k-modes attribute (aligned site) clustering algorithm to the ubiquitin and transthyretin families in order to discover associations among groups of sites within the multiple sequence alignment. We then observe what these associations imply within the 3D structure of these two protein families.

Results

The k-modes site clustering algorithm we developed maximizes the intra-group interdependencies based on a normalized mutual information measure. The clusters formed correspond to sub-structural components or binding and interface locations. Applying this data-directed method to the ubiquitin and transthyretin protein family multiple sequence alignments as a test bed, we located numerous interesting associations of interdependent sites. These clusters were then arranged into cluster tree diagrams which revealed four structural sub-domains within the single domain structure of ubiquitin and a single large sub-domain within transthyretin associated with the interface among transthyretin monomers. In addition, several clusters of mutually interdependent sites were discovered for each protein family, each of which appear to play an important role in the molecular structure and/or function.

Conclusions

Our results demonstrate that the method we present here using a k- modes site clustering algorithm based on interdependency evaluation among sites obtained from a sequence alignment of homologous proteins can provide significant insights into the complex, hierarchical inter-residue structural relationships within the 3D structure of a protein family.
  相似文献   
103.
The cerebellum sits at the rostral end of the vertebrate hindbrain and is responsible for sensory and motor integration. Owing to its relatively simple architecture, it is one of the most powerful model systems for studying brain evolution and development. Over the last decade, the combination of molecular fate mapping techniques in the mouse and experimental studies, both in vitro and in vivo, in mouse and chick have significantly advanced our understanding of cerebellar neurogenesis in space and time. In amniotes, the most numerous cell type in the cerebellum, and indeed the brain, is the cerebellar granule neurons, and these are born from a transient secondary proliferative zone, the external granule layer (EGL), where proliferation is driven by sonic hedgehog signalling and causes cerebellar foliation. Recent studies in zebrafish and sharks have shown that while the molecular mechanisms of neurogenesis appear conserved across vertebrates, the EGL as a site of shh-driven transit amplification is not, and is therefore implicated as a key amniote innovation that facilitated the evolution of the elaborate foliated cerebella found in birds and mammals. Ellucidating the molecular mechanisms underlying the origin of the EGL in evolution could have significant impacts on our understanding of the molecular details of cerebellar development.  相似文献   
104.
Phosphorylation of proteins is an important mechanism used to regulate most cellular processes. Recently, we completed an extensive phosphoproteomic analysis of the core proteins that constitute the Saccharomyces cerevisiae centrosome. Here, we present a study of phosphorylation sites found on the mitotic exit network (MEN) proteins, most of which are associated with the cytoplasmic face of the centrosome. We identified 55 sites on Bfa1, Cdc5, Cdc14 and Cdc15. Eight sites lie in cyclin-dependent kinase motifs (Cdk, S/T-P), and 22 sites are completely conserved within fungi. More than half of the sites were found in centrosomes from mitotic cells, possibly in preparation for their roles in mitotic exit. Finally, we report phosphorylation site information for other important cell cycle and regulatory proteins.Key words: in vivo phosphorylation, yeast centrosome, mitotic exit network (MEN), cell cycle, protein kinase, Cdk (cyclin-dependent kinase)/Cdc28, Plk1 (polo-like kinase)/Cdc5Reversible protein phosphorylation leads to changes in targeting, structure and stability of proteins and is used widely to modulate biochemical reactions in the cell. We are interested in phosphoregulation of centrosome duplication and function in the yeast Saccharomyces cerevisiae. Centrosomes nucleate microtubules and, upon duplication during the cell cycle, form the two poles of the bipolar mitotic spindle used to segregate replicated chromosomes into the two daughter cells. Timing and spatial cues are highly regulated to ensure that elongation of the mitotic spindle and separation of sister chromatids occur prior to progression into late telophase and initiation of mitotic exit. The mitotic exit network (MEN) regulates this timing through a complex signaling cascade activated at the centrosome that triggers the end of mitosis, ultimately through mitotic cyclin-dependent kinase (Cdk) inactivation (reviewed in ref. 1).The major components of the MEN pathway (Fig. 1) are a Ras-like GTPase (Tem1), an activator (Lte1) with homology to nucleotide exchange factors, a GTPase-activating protein (GAP) complex (Bfa1/Bub2), several protein kinases [Cdc5 (Plk1 in humans), Cdc15 and Dbf2/Mob1] and Cdc14 phosphatase (reviewed in ref. 25). Tem1 initiates the signal for the MEN pathway when switched to a GTP-active state. Prior to activation at anaphase, it is held at the centrosome in an inactive GDP-bound state by an inhibiting GAP complex, Bfa1/Bub2.6 The Bfa1/Bub2 complex and the inactive Tem1 are localized at the mother centrosome destined to move into the budded cell upon chromosome segregation, whereas the activator Lte1 is localized at the tip of the budded cell. These separate localizations ensure that Lte1 and Tem1 only interact in late anaphase, when the mitotic spindle elongates.7,8 Lte1 has been thought to activate Tem1 as a nucleotide exchange factor, although more recent evidence suggests that it may instead affect Bfa1 localization.9 In addition, full activation of Tem1 is achieved through Cdc5 phosphorylation of the negative regulator Bfa1 10 and potentially through phosphorylation of Lte1. GTP-bound Tem1 is then able to recruit Cdc15 to the centrosome, allowing for Dbf2 activation.3 The final step in the MEN pathway is release of Cdc14 from the nucleolus, which is at least partially due to phosphorylation by Dbf211 an leads to mitotic cyclin degradation and inactivation of the mitotic kinase.2Open in a separate windowFigure 1Schematic representation of the MEN proteins and pathway. MEN protein localization is shown within a metaphase cell when mitotic exit is inhibited and in a late anaphase cell when mitotic exit is initiated. Primary inhibition and activation events are described below the cells.Recently, we performed a large-scale analysis of phosphorylation sites on the 18 core yeast centrosomal proteins present in enriched centrosomal preparations.12 In total, we mapped 297 sites on 17 of the 18 proteins and described their cell cycle regulation, levels of conservation and demonstrated defects in centrosome assembly and function resulting from mutating selected sites. MEN proteins were also identified in the centrosome preparations. This was expected, because Nud1, one of the 18 core centrosome components, is known to recruit several MEN proteins to the centrosome13 as part of its function in mitotic exit.14,15 As phosphorylation is essential to several steps in the MEN pathway, beginning with recruitment of Bfa1/Bub2 by phosphorylated Nud1,15 we were interested in mapping in vivo phosphorylation sites on the MEN proteins associated with centrosomes and identifying when they occur during the cell cycle.We combined centrosome enrichment with mass spectrometry analysis to examine phosphorylation from asynchronously growing cells.12 Centrosomes were also prepared from cells arrested in G1 and mitosis12 to monitor potentially cell cycle-regulated sites. We obtained significant coverage of a number of the MEN proteins, several of which have human homologs (and33, column 1), of which eight sites lie within Cdk/Cdc28 motifs [S/T(P)], (23 Mob1 and Dbf2 are known phosphoproteins24 for which we observed peptide coverage but no phosphorylation. Surprisingly, we did not detect phosphorylation on Bub2 despite the high peptide coverage; it is possible that the mitotic centrosome preparations (using a Cdc20 depletion protocol) affect the phosphorylation state of Bub2, as Bub2 is required for mitotic exit arrest in cdc20 mutants.25 Additionally, specific phosphorylation sites have not been mapped on Bub2, suggesting that modifications on this protein may be difficult to observe by mass spectrometry. Lte1 does not localize to the centrosome, and we did not recover Lte1 peptides in our preparations. Many phosphorylation events on MEN proteins were observed in mitotic centrosomal preparations, most likely in preparation for their subsequent role in exit from mitosis (
MEN ProteinSequence CoverageTotal SitesS/T (P) SitesHuman Homologs
Bfa198%352N/A
Cdc1480%102CDC14A, 14B2
Cdc1512%31MST1, STK4
Cdc541%73PLK1, PLK2, PLK3
Bub267%--N/A
Tem118%--RAB22, RAB22A
Mob113%--MOB1B, 1A, 2A, 2B
Dbf22%--STK38, LATS1
TOTAL558
Open in a separate window

Table 2

Cell cycle regulators of MEN proteins
Cell Cycle Regulator
CdkCdc5Cdc14Dbf2
Bfa16,10,23,2425
Cdc14212611
Cdc521,27
Cdc15282831
Open in a separate window

Table 3

All phosphorylation sites identified in MEN proteins Bfa1, Cdc14, Cdc15 and Cdc5
Open in a separate window
Open in a separate window
Open in a separate windowConservation of domains or of individual residues of proteins is often correlated with function.26 We utilized a protein fungal alignment tool (SGD: www.yeastgenome.org/) to analyze the conservation of the individual phosphorylated residues among selected Saccharomyces strains. If an amino acid substitution occurred, we noted whether the alternate residue could also be phosphorylated [serine (S) or threonine (T)], or whether it mimicked phosphorylation with a negative charge [aspartic (D) or glutamic (E) acid]. Using these criteria with the 55 phosphorylation sites, we found 22 that were completely identical among the fungi, two that were conserved as potential phosphorylation sites (6 Interestingly, Cdc5-T238 is also conserved in human polo-like kinases (Plk1–3). In another study, Mohl et al. tested nonphosphorylatable mutations of Dbf2 kinase motifs adjacent to the nuclear localization domain within Cdc14 phosphatase. One mutant allele of CDC14 wherein four Dbf2 motif sites were changed to alanines, includes our mapped site, S546 (20 While exceptionally rich clusters of phosphorylation sites (≥ 5/50 residues) are rare in the yeast proteome,27 the dense negative charge associated with phosphorylation clusters can enhance the rapidity and magnitude of the resulting cellular event. Two of the MEN proteins examined, Bfa1 (24 out of 35 total sites) and Cdc14 (5 out of 10 total sites), showed evidence of phosphorylation clustering (Fig. 2). Mutating groups of these clustered sites could provide insight into how the negatively charged regions affect protein localization and/or function.Open in a separate windowFigure 2Clustering of phosphorylation sites within the MEN proteins, Bfa1 and Cdc14. All phosphorylation sites within Bfa1 and Cdc14 are shown along the X-axis, representing the primary protein sequence and the Y-axis denoting the number of sites. Sites are considered clustered if there are at least 5 sites with a density ≥ 1 per 10 amino acids, and are marked with a horizontal bracket.In addition to proteins known to be associated with the yeast centrosome, such as the MEN proteins described, we recovered limited peptides from a number of other cell cycle and regulatory proteins. The high sensitivity with which mass spectrometry can detect modifications on proteins enabled the identification of in vivo phosphorylation sites that are cataloged in Open in a separate windowOpen in a separate windowOur large-scale centrosome enrichment and phosphorylation analysis has yielded a rich library of phosphorylation events on core centrosomal components, those involved in the mitotic exit network and additional regulatory proteins. Information regarding the phosphorylation state of various proteins throughout the cell will be useful in studying their control and function.?

Table 4

Summary of phosphorylation sites identified in centrosomes from different cell cycle stages and their conservation
Open in a separate window
Open in a separate window  相似文献   
105.
Oxr1 is essential for protection against oxidative stress-induced neurodegeneration     
Oliver PL  Finelli MJ  Edwards B  Bitoun E  Butts DL  Becker EB  Cheeseman MT  Davies B  Davies KE 《PLoS genetics》2011,7(10):e1002338
Oxidative stress is a common etiological feature of neurological disorders, although the pathways that govern defence against reactive oxygen species (ROS) in neurodegeneration remain unclear. We have identified the role of oxidation resistance 1 (Oxr1) as a vital protein that controls the sensitivity of neuronal cells to oxidative stress; mice lacking Oxr1 display cerebellar neurodegeneration, and neurons are less susceptible to exogenous stress when the gene is over-expressed. A conserved short isoform of Oxr1 is also sufficient to confer this neuroprotective property both in vitro and in vivo. In addition, biochemical assays indicate that Oxr1 itself is susceptible to cysteine-mediated oxidation. Finally we show up-regulation of Oxr1 in both human and pre-symptomatic mouse models of amyotrophic lateral sclerosis, indicating that Oxr1 is potentially a novel neuroprotective factor in neurodegenerative disease.  相似文献   
106.
Shear and extensional rheology of cellulose/ionic liquid solutions     
Haward SJ  Sharma V  Butts CP  McKinley GH  Rahatekar SS 《Biomacromolecules》2012,13(5):1688-1699
In this study, we characterize the shear and extensional rheology of dilute to semidilute solutions of cellulose in the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIAc). In steady shear flow, the semidilute solutions exhibit shear thinning, and the high-frequency complex modulus measured in small amplitude oscillatory shear flow exhibits the characteristic scaling expected for solutions of semiflexible chains. Flow curves of the steady shear viscosity plotted against shear rate closely follow the frequency dependence of the complex viscosity acquired using oscillatory shear, thus satisfying the empirical Cox-Merz rule. We use capillary thinning rheometry (CaBER) to characterize the relaxation times and apparent extensional viscosities of the semidilute cellulose solutions in a uniaxial extensional flow that mimics the dynamics encountered in the spin-line during fiber spinning processes. The apparent extensional viscosity and characteristic relaxation times of the semidilute cellulose/EMIAc solutions increase dramatically as the solutions enter the entangled concentration regime at which fiber spinning becomes viable.  相似文献   
107.
Mapping quantitative trait loci (QTLs) for fatty acid composition in an interspecific cross of oil palm   总被引:2,自引:0,他引:2  
Rajinder Singh  Soon G Tan  Jothi M Panandam  Rahimah Abdul Rahman  Leslie CL Ooi  Eng-Ti L Low  Mukesh Sharma  Johannes Jansen  Suan-Choo Cheah 《BMC plant biology》2009,9(1):114-19

Background  

Marker Assisted Selection (MAS) is well suited to a perennial crop like oil palm, in which the economic products are not produced until several years after planting. The use of DNA markers for selection in such crops can greatly reduce the number of breeding cycles needed. With the use of DNA markers, informed decisions can be made at the nursery stage, regarding which individuals should be retained as breeding stock, which are satisfactory for agricultural production, and which should be culled. The trait associated with oil quality, measured in terms of its fatty acid composition, is an important agronomic trait that can eventually be tracked using molecular markers. This will speed up the production of new and improved oil palm planting materials.  相似文献   
108.
An easy and reliable method for establishment and maintenance of leaf and root cell cultures ofArabidopsis thaliana     
CL Encina  M Constantin  J Botella 《Plant Molecular Biology Reporter》2001,19(3):245-248
Cell suspension cultures are useful for a wide range of biochemical and physiological studies, yet their production can be technically demanding and often unreliable. Here we describe a protocol for producing Arabidopsis cell suspension cultures that is reliable and easy to use.  相似文献   
109.
Comparison of the promoting activity of pristane and n-alkanes in skin carcinogenesis with their physical effects on micellar models of biological membranes     
A.Wesley Horton  Linda C. Bolewicz  Arthur W. Barstad  Charles K. Butts 《生物化学与生物物理学报:生物膜》1981,648(1):107-112
In 1976 (Horton, A.W., Butts, C.K. and Schuff, A.R. (1976) Colloid Interface Sci. 5, 159–168) we assayed pristance (2,6,10,14-tetramethylpentadecane) in a model interfacial system that has given excellent correlation with cocarcinogenic activity among n-alkanes, as tested in cycloalkane diluents. It was predicted that this branched-chain derivative of the diterpenes would have higher activity than n-C18H38, one of the most cocarcinogenic of the n-alkanes in such diluents. Pristane was compared with n-C18H38 and two other n-alkanes for their promoting activities in cyclohexane for C3H male mice after a single application of 7,12-dimethylbenz[a]anthracene. The branched-chain alkane proved to be more active. 20% n-tetracosane in cyclohexane was inactive, which correlated with its effects in this diluent in the physical assay system. The promoting activity of 75% n-octane in cyclohexane, predicted by the physical assay, was confirmed by tests on mice. The combined by-products of the synthesis of tetracosane, including C12 alkanes and alkenes, C19 and C20 alkylbenzenes, and C24 alkenes, proved to be a very active promoter. However, a mixture in cyclohexane of purified tetracosane with this composite of potential impurities was inactive. From the alkanes behavior in physical systems involving vatious membrane phospholipids and steroids, it is hypothesized that the primary step in their biological activity is a chain-chain interaction with membrane lipids that alters the properties of liquid-crystalline phases at aqueous interfaces. Resulting changes in the microfluidity of the lipid phase and the lateral mobility of critical hormone receptors and enzyme systems, such as the nucleotidyl cyclases, would perturb control systems that maintain the normal behavior of the initiated cell. Thus, its progression to a proliferating neoplasm may be favored.  相似文献   
110.
Ex Vivo Culture of Chick Cerebellar Slices and Spatially Targeted Electroporation of Granule Cell Precursors     
Michalina Hanzel  Richard J.T. Wingate  Thomas Butts 《Journal of visualized experiments : JoVE》2015,(106)
The cerebellar external granule layer (EGL) is the site of the largest transit amplification in the developing brain, and an excellent model for studying neuronal proliferation and differentiation. In addition, evolutionary modifications of its proliferative capability have been responsible for the dramatic expansion of cerebellar size in the amniotes, making the cerebellum an excellent model for evo-devo studies of the vertebrate brain. The constituent cells of the EGL, cerebellar granule progenitors, also represent a significant cell of origin for medulloblastoma, the most prevalent paediatric neuronal tumour. Following transit amplification, granule precursors migrate radially into the internal granular layer of the cerebellum where they represent the largest neuronal population in the mature mammalian brain. In chick, the peak of EGL proliferation occurs towards the end of the second week of gestation. In order to target genetic modification to this layer at the peak of proliferation, we have developed a method for genetic manipulation through ex vivo electroporation of cerebellum slices from embryonic Day 14 chick embryos. This method recapitulates several important aspects of in vivo granule neuron development and will be useful in generating a thorough understanding of cerebellar granule cell proliferation and differentiation, and thus of cerebellum development, evolution and disease.  相似文献   
[首页] « 上一页 [5] [6] [7] [8] [9] [10] 11 [12] [13] [14] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号